دوره 15، شماره 47 - ( پاییز 1402 )                   جلد 15 شماره 47 صفحات 55-41 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azizyan R, Abdollahi Mandoulakani B. (2023). The Effect of Drought Stress on Some Morphological, Phytochemical, and Biochemical Characteristics of the Medicinal Plant Field Sowthistle (Sonchus arvensis L.). J Crop Breed. 15(47), 41-55. doi:10.61186/jcb.15.47.41
URL: http://jcb.sanru.ac.ir/article-1-1435-fa.html
عزیزیان رقیه، عبدالهی مندولکانی بابک. تاثیر تنش خشکی بر برخی خصوصیات مورفولوژیکی، فیتوشیمیایی و بیوشیمیایی گیاه دارویی شیرتیغک وحشی (,Sonchus arvensis L) پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (47) :55-41 10.61186/jcb.15.47.41

URL: http://jcb.sanru.ac.ir/article-1-1435-fa.html


1- گروه مهندسی تولید و زنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
2- گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده:   (1295 مشاهده)
چکیده مبسوط
مقدمه و هدف:
شیرتیغک (Sonchus arvensis L.) گیاهی با پتانسیل بالای دارویی و تغذیه ­ای است که خواص دارویی این گیاه به دلیل وجود ترکیبات فیتوشیمیایی مهم به ویژه فنول­ ها و فلاونوئید­ها می­ باشد. خشکی یک تنش غیر زیستی مهم بوده و محدود کننده ­ترین عامل برای رشد و تولید گیاهان است. گیاه شیرتیغک دارای متابولیت­ های ثانویه ­ی ارزشمندی می ­باشد، بنابراین درک پاسخ های فیزیولوژیکی این گیاه در واکنش به تنش خشکی ضروری است. هدف از این تحقیق، مطالعه تاثیر تنش خشکی بر خصوصیات مورفولوژیکی و برخی پارامترهای فیتوشیمیایی و بیوشیمیایی گیاه دارویی شیر تیغک وحشی است.

مواد و روش ­ها: به‌منظور بررسی اثر تنش خشکی بر خصوصیات مورفولوژیکی، فیتوشیمیایی و بیوشیمیایی گیاه شیرتیغک وحشی، یک آزمایش گلدانی به صورت طرح کاملاً تصادفی در سه تکرار اجرا شد. تیمار­های تنش خشکی شامل چهار سطح %100 (بدون تنش)، %75، %50 و %25 ظرفیت زراعی بود. صفات مورفولوژیکی مطالعه شده شامل مؤلفه­ های رشدی مانند وزن تر و خشک اندام هوایی، وزن تر و خشک ریشه، ارتفاع گیاه و طول ریشه بود. همچنین صفات فیتوشیمیایی شامل رنگیزه­ های فتوسنتزی، محتوای نسبی آب، فنول کل، فلاونوئید کل، ظرفیت آنتی اکسیدانی با دو روش DPPH و FRAP، پرولین و قند محلول و همچنین صفات بیوشیمیایی مانند فعالیت آنزیم­ های آنتی ­اکسیدانی کاتالاز، سوپر اکسید دیسموتاز، گلوتاتیون پراکسیدار، آسکوربات پراکسیداز و پروتئین کل در برگ­ های میانی و پایینی اندازه گیری شد.
یافته­ ها: نتایج نشان داد که تنش خشکی تأثیر معنیداری بر مؤلفههای رشدی، محتوی نسبی آب برگ، پرولین، قند محلول، کلروفیل a و b و کلروفیل کل، کارتنوئید، فنول کل، فلاونوئید کل، فعالیت آنتیاکسیدانی کاتالاز، سوپر اکسید دیسموتاز، آسکوربات پراکسیداز، گایاکول پراکسیداز و مهار فعالیت رادیکالDPPH  و قدرت احیاء‌کنندگی آهن (FRAP) دارد. با کاهش مقدار آب خاک، ارتفاع بوته، وزن تر و خشک اندام هوایی و ریشه، محتوای نسبی آب، کلروفیل a و کلروفیل کل کاهش و در مقابل میزان طول ریشه، کلروفیل b، کارتنوئید، پرولین، قند محلول، پروتئین کل، فنول و فلاونوئید کل، آنزیم­ های آنتی اکسیدانی، مهار فعالیت رادیکالDPPH  و قدرت احیاء‌کنندگی آهن (FRAPافزایش یافت. همچنین برخی صفات در برگ میانی و پایینی مورد بررسی قرار گرفتند که از نظر صفات فوق بین برگ میانی و پایینی اختلاف وجود داشت و برگ­ های میانی حاوی میزان بیشتری از صفات مورد بررسی بودند.
نتیجه­ گیری: نتایج مطالعه حاضر نشان داد که تنش خشکی باعث کاهش صفات مورفولوژیکی به جز طول ریشه شد. همچنین میزان بیشتری از صفات فیتوشیمیایی در برگ ­­های میانی نسبت به برگ­ های پایینی مشاهده شد. بطور کلی تنش خشکی باعث افزایش صفات بیوشیمیایی و همچنین افزایش در صفات فیتو شیمیایی به جز محتوای نسبی آب، کلروفیل a و کلروفیل کل شد.
متن کامل [PDF 5009 kb]   (843 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1401/9/23 | پذیرش: 1401/11/30

فهرست منابع
1. Abbaszadeh, B., Sharifi Ashourabadi, E., Lebaschi, M. H., Naderi hajibagher Kandy, M., & Moghadami, F. (2008). The effect of drought stress on proline contents, soluble sugars, chlorophyll and relative water contents of balm (Melissa officinalis L.). Iranian Journal of Medicinal and Aromatic Plants Research, 23(4), 504-513.
2. Aebi, H. (1984). [13] Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121-126). Elsevier. [DOI:10.1016/S0076-6879(84)05016-3]
3. Albouchi, A., Béjaoui, Z., & El Aouni, M. H. (2003). Influence d 'un stress hydrique modéré ou sévère sur la croissance de jeunes plants de Casuarina glauca Sieb. Science et changements planétaires/Sécheresse, 14(3), 137-142.
4. Alkadi, H. (2020). A review on free radicals and antioxidants. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 20(1), 16-26. [DOI:10.2174/1871526518666180628124323]
5. Allahdadi, M., & Bahreininejad, B. (2019). Effects of water stress on growth parameters and forage quality of globe artichoke (Cynara cardunculus var. scolymus L.). Iran Agricultural Research, 38(2), 101-110.
6. An, X., Zhang, J., Dai, L., Deng, G., Liao, Y., Liu, L., Peng, D. (2016). Isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteome analysis of the response of ramie under drought stress. International journal of molecular sciences, 17(10), 1607. [DOI:10.3390/ijms17101607]
7. Arnon, A. (1967). Method of extraction of chlorophyll in the plants. Agronomy journal, 23(1), 112-121.
8. Aware, C. B., Patil, D. N., Suryawanshi, S. S., Mali, P. R., Rane, M. R., Gurav, R. G., & Jadhav, J. P. (2022). Natural bioactive products as promising therapeutics: A review of natural product-based drug development. South African Journal of Botany, 151, 512-528. [DOI:10.1016/j.sajb.2022.05.028]
9. Azari Nasrabad, AS., SM. Mousavi Nick, M. Golavi, AS. Beheshti & AS. Sirus Mehr. (2016). Effect of drought stress in different growth stages on yield and its components and biochemical characteristics of grain sorghum genotypes. Iranian Agricultural Research, 2(2): 167- 176. (In persian).
10. Bhakta, D., & Ganjewala, D. (2009). Effect of leaf positions on total phenolics, flavonoids and proanthocyanidins content and antioxidant activities in Lantana camara (L). Journal of scientific Research, 1(2), 363-369. [DOI:10.3329/jsr.v1i2.1873]
11. Bistgani, Z. E., Siadat, S. A., Bakhshandeh, A., Pirbalouti, A. G., & Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal, 5(5), 407-415. [DOI:10.1016/j.cj.2017.04.003]
12. Bradford, M. M. (1976). Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein day binding. Analitical Biochemistry, 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
13. Carroll, N. V., Longley, R. W., & Roe, J. H. (1956). The determination of glycogen in liver and muscle by use of anthrone reagent. J biol Chem, 220(2), 583-593. [DOI:10.1016/S0021-9258(18)65284-6]
14. Caunii, A., Butu, M., Rodino, S., Motoc, M., Negrea, A., Samfira, I., & Butnariu, M. (2015). Isolation and separation of inulin from Phalaris arundinacea roots. Revista de chimie, 66(4), 472-476.
15. Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). [DOI:10.38212/2224-6614.2748]
16. Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). [DOI:10.38212/2224-6614.2748]
17. Dadashi, G., Asghari, A., Ebadi, A., & Yousefi Azarkhanian, M. (2020). Evaluation of Biochemical and Antioxidant Characters in Fennel (Foeniculum Vulgare) Ecotypes under Drought Stress. Journal of Crop Breeding, 12(33), 140-149. [DOI:10.29252/jcb.12.33.140]
18. Dashti, M., Kafi, M., Tavakoli, H., & Mirza, M. (2015). Investigation on some morphophysiological indices in Salvia leriifolia Benth. under water deficit stress. Iranian Journal of Field Crops Research, 13(2), 298-307.
19. de Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry, 43(3), 241-248. [DOI:10.1016/j.plaphy.2005.01.020]
20. Deka, D., Singh, A. K., & Singh, A. K. (2018). Effect of drought stress on crop plants with special reference to drought avoidance and tolerance mechanisms: A review. Int. J. Curr. Microbiol. Appl. Sci, 7, 2703-2721. [DOI:10.20546/ijcmas.2018.709.336]
21. Ebrahimi, A., M.R. Naghavi and M. Sabokdast. 2009. Ivaluation and comparision of chlorophyll content, carotenoid, protein and enzyme in different barley species native in Iran. Journal of Agricultural Science, 40: 77-89. (in Persian).
22. Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48(1), 43-49. [DOI:10.1016/S0098-8472(02)00008-4]
23. Ekren, S., Sönmez, Ç., Özçakal, E., Kurttaş, Y. S. K., Bayram, E., & Gürgülü, H. (2012). The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agricultural water management, 109, 155-161. [DOI:10.1016/j.agwat.2012.03.004]
24. Ekren, S., Sönmez, Ç., Özçakal, E., Kurttaş, Y. S. K., Bayram, E., & Gürgülü, H. (2012). The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agricultural water management, 109, 155-161. [DOI:10.1016/j.agwat.2012.03.004]
25. ElSayed, A. I., El-Hamahmy, M. A., Rafudeen, M. S., Mohamed, A. H., & Omar, A. A. (2019). The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum (L.) Gaertn). Plants, 8(12), 611. [DOI:10.3390/plants8120611]
26. Eskandari, M. (2013). Changes in growth parameters and essential oil content of Satureja bachtiarica Bunge under the effects of 28-Homobrassinolid and drought stress. Iranian Journal of Medicinal and Aromatic Plants, 29(1).
27. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188. [DOI:10.1007/978-90-481-2666-8_12]
28. Farsi, M., Abdollahi, F., Salehi, A., & Ghasemi, S. (2017). Study of physiological characteristics of marjoram (Origanum majorana), as a medicinal plant in response to zinc levels under drought stress conditions. Environmental Stresses in Crop Sciences, 10(4), 559-570.
29. Foyer, C., Descourvieres, P., & Kunert, K. (1994). Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant, Cell & Environment, 17(5), 507-523. [DOI:10.1111/j.1365-3040.1994.tb00146.x]
30. Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45(2), 105-114. [DOI:10.1016/S0098-8472(00)00084-8]
31. García-Caparrós, P., Romero, M. J., Llanderal, A., Cermeño, P., Lao, M. T., & Segura, M. L. (2019). Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six Lamiaceae species. Water, 11(3), 573. [DOI:10.3390/w11030573]
32. Gharibi, S., Tabatabaei, B. E. S., Saeidi, G., & Goli, S. A. H. (2016). Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied biochemistry and biotechnology, 178, 796-809. [DOI:10.1007/s12010-015-1909-3]
33. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314. [DOI:10.1104/pp.59.2.309]
34. Hassani, A. (2006). Effect of water deficit stress on growth, yield and essential oil content of Dracocephalum moldavica. Iranian journal of medicinal and aromatic plants research, 22(3), 256-261.
35. Hlaváčová, M., Klem, K., Rapantová, B., Novotná, K., Urban, O., Hlavinka, P., Pohanková, E. (2018). Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field crops research, 221, 182-195. [DOI:10.1016/j.fcr.2018.02.022]
36. Izadi, Z., ESNA, A. M., & Ahmadvand, G. (2009). Effect of drought stress on yield, proline contents, soluble sugars, chlorophyll, relative water contents and essential oil in peppermint (Mentha piperita L.).
37. Jaafar, H. Z., Ibrahim, M. H., & Fakri, N. F. M. (2012). Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules, 17(6), 7305-7322. [DOI:10.3390/molecules17067305]
38. Jadid, N., Hidayati, D., Hartanti, S. R., Arraniry, B. A., Rachman, R. Y., & Wikanta, W. (2017). Antioxidant activities of different solvent extracts of Piper retrofractum Vahl. using DPPH assay. AIP conference proceedings, [DOI:10.1063/1.4985410]
39. Jaleel, C. A., Manivannan, P., Kishorekumar, A., Sankar, B., Gopi, R., Somasundaram, R., & Panneerselvam, R. (2007). Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids and Surfaces B: Biointerfaces, 59(2), 150-157. [DOI:10.1016/j.colsurfb.2007.05.001]
40. Jampeetong, A., & Brix, H. (2009). Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany, 91(3), 181-186. [DOI:10.1016/j.aquabot.2009.05.003]
41. Jia, P.-Y., Zhang, L.-X., Huang, Z., Tian, F.-P., Hu, Y., & Wu, G.-L. (2018). Physiological characteristics of three wild Sonchus species to prolonged drought tolerance in arid regions. Pak. J. Bot, 50(1), 9-17.
42. Khalid, K. A. (2006). Influence of water stress on growth, essential oil, and chemical composition of herbs [Ocimum sp.]. International agrophysics, 20(4).
43. Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., & Khalighi, A. (2011). The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). Journal of Medicinal Plants Research, 5(22), 5360-5365.
44. Khosrowshahi, Z. T., Ghassemi-Golezani, K., Salehi-Lisar, S. Y., & Motafakkerazad, R. (2020). Changes in antioxidants and leaf pigments of safflower (Carthamus tinctorius L.) affected by exogenous spermine under water deficit. Biologia Futura, 71, 313-321. [DOI:10.1007/s42977-020-00039-z]
45. Kishor, P. K., Sangam, S., Amrutha, R., Laxmi, P. S., Naidu, K., Rao, K. S., Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 424-438.
46. Kolmogorov, A. (1992). On the empirical determination of a distribution function. Breakthroughs in Statistics: Methodology and Distribution, 106-113. [DOI:10.1007/978-1-4612-4380-9_10]
47. Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in chemistry, 6, 26. [DOI:10.3389/fchem.2018.00026]
48. Lee, B.-R., Islam, M. T., Park, S.-H., Jung, H.-i., Bae, D.-W., & Kim, T.-H. (2019). Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environmental and experimental botany, 157, 1-10. [DOI:10.1016/j.envexpbot.2018.09.013]
49. MacAdam, J. W., Nelson, C. J., & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878. [DOI:10.1104/pp.99.3.872]
50. Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141-149. [DOI:10.1016/j.colsurfb.2007.05.002]
51. Meena, Y.K. and N. Kaur. (2019). Towards an understanding of physiological and biochemical mechanisms of drought tolerance in plant. Annual Research and Review in Biology, pp: 1-13. [DOI:10.9734/arrb/2019/v31i230042]
52. Minaei, A., Hassani, A., Nazemiyeh, H., & Besharat, S. (2019). Effect of drought stress on some morphophysiological and phytochemical characteristics of oregano (Origanum vulgare L. ssp. gracile). Iranian Journal of Medicinal and Aromatic Plants, 35(2).
53. Minaei, A., Hassani, A., Nazemiyeh, H., & Besharat, S. (2019). Effect of drought stress on some morphophysiological and phytochemical characteristics of oregano (Origanum vulgare L. ssp. gracile). Iranian Journal of Medicinal and Aromatic Plants, 35(2).
54. Mishra, A., & Jha, B. (2011). Antioxidant response of the microalga Dunaliella salina under salt stress. [DOI:10.1515/bot.2011.012]
55. Muhammad Aslam, M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International journal of molecular sciences, 23(3), 1084. [DOI:10.3390/ijms23031084]
56. Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and cell physiology, 28(1), 131-140.
57. Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and cell physiology, 28(1), 131-140.
58. Navvabpour, S., SH. Mirkarimi and A. Mazandarani. 2013. Evaluation of changes in enzymatic and non-enzymatic defense system of soybean cultivars in response to carcinogenic B carcinoma during growth stages. Crop Biotechnology, 5: 63-73. (in Persian).
59. Nematpour, A., Eshghizadeh, H. R., Zahedi, M., & Gheysari, M. (2020). Interactive effects of sowing date and nitrogen fertilizer on water and nitrogen use efficiency in millet cultivars under drought stress. Journal of Plant Nutrition, 43(1), 122-137. [DOI:10.1080/01904167.2019.1659351]
60. Paquin, R., & Lechasseur, P. (1979). Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18), 1851-1854. [DOI:10.1139/b79-233]
61. Pirbalouti, A. G., Malekpoor, F., Salimi, A., & Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia horticulturae, 217, 114-122. [DOI:10.1016/j.scienta.2017.01.031]
62. Prathyusha, I. V. S. N., & Chaitanya, K. V. (2019). Effect of water stress on the physiological and biochemical responses of two different Coleus (Plectranthus) species. Biologia Futura, 70(4), 312-322. [DOI:10.1556/019.70.2019.35]
63. Puente-Garza, C. A., Meza-Miranda, C., Ochoa-Martínez, D., & García-Lara, S. (2017). Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant physiology and biochemistry, 115, 400-407. [DOI:10.1016/j.plaphy.2017.04.012]
64. Qi, J., Sun, S., Yang, L., Li, M., Ma, F., & Zou, Y. (2019). Potassium uptake and transport in apple roots under drought stress. Horticultural plant journal, 5(1), 10-16. [DOI:10.1016/j.hpj.2018.10.001]
65. Ramezani, E., Ghajar Sepanlou, M., & Naghdi Badi, H. (2016). Studying the morphological and physiological changes of Echium amoenum Fisch. & Mey. medicinal plant under drought stress. Environmental Stresses in Crop Sciences, 8(2), 339-343.
66. Rezaei Chiyaneh, E., Zehtab Salmasi, S., Ghassemi Golezani, K., & Delazar, A. (2012). Physiological responses of fennel (Foeniculum vulgare L.) to water limitation. Journal of Agroecology, 4(4), 347-355.
67. Rezapor, A., Heidari, M., Galavi, M., & Ramrodi, M. (2011). Effect of water stress and different amounts of sulfur fertilizer on grian yield, grain yield components and osmotic adjustment in Nigella sativa L. Iranian Journal of Medicinal and Aromatic Plants Research, 27(3), 384-396.
68. Rihan, H., Mahmood, B., Foulkes, M., & Burchett, S. (2017). The effect of drought on phytochemical active compounds content in chamomile and yarrow. [DOI:10.19080/ARTOAJ.2017.12.555855]
69. Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30(1), 105-111. [DOI:10.2135/cropsci1990.0011183X003000010025x]
70. Sairam, R., & Srivastava, G. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70. [DOI:10.1046/j.1439-037x.2001.00461.x]
71. Salem, N., Msaada, K., Dhifi, W., Sriti, J., Mejri, H., Limam, F., & Marzouk, B. (2014). Effect of drought on safflower natural dyes and their biological activities. EXCLI journal, 13, 1.
72. Seal, T. (2016). Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. Journal of Applied Pharmaceutical Science, 6(2), 157-166. [DOI:10.7324/JAPS.2016.60225]
73. Sharifi Soltani, S., Ranjbar, G. A., Kazemitabar, S. K., Pakdin Parizi, A., & Najafi Zarini, H. (2022). Evaluation of photosynthetic pigment, antioxidant and non-antioxidant activity and some morphological traits changes under drought stress in castor plant (Ricinus Communis L.). Journal of Crop Breeding, 0-0. [DOI:10.52547/jcb.14.44.119]
74. Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 28(1), 49-55. [DOI:10.5344/ajev.1977.28.1.49]
75. Sreenivasulu, N., Harshavardhan, V. T., Govind, G., Seiler, C., & Kohli, A. (2012). Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506(2), 265-273. [DOI:10.1016/j.gene.2012.06.076]
76. Štajner, D., Orlovic, S., Popovic, B., Kebert, M., & Galic, Z.(2011). Screening of drought oxidative stress tolerance in Serbian melliferous plant species. African Journal of Biotechnology, 10(9), 1609-1614.
77. Subbarao, G. V., Nam, N. H., Chauhan, Y. S., & Johansen, C. (2000). Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. Journal of plant physiology, 157(6), 651-659. [DOI:10.1016/S0176-1617(00)80008-5]
78. Subositi, D., & Mujahid, R. (2019). Keanekaragaman Genetik Tempuyung (Sonchus arvensis L.) berdasarkan Marka Inter-Simple Sequence Repeats (ISSR). Majalah Ilmiah Biologi Biosfera: A Scientific Journal, 36(2), 57-62. [DOI:10.14203/beritabiologi.v17i2.2642]
79. Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant science, 161(3), 613-619. [DOI:10.1016/S0168-9452(01)00450-2]
80. Tandi, J., Sutrisna, I. N. E., Pratiwi, M., & Handayani, T. W. (2020). Potential Test of nephropathy Sonchus arvensis L. leaves on male rats (Rattus norvegicus) diabetes mellitus. Pharmacognosy Journal, 12(5). [DOI:10.5530/pj.2020.12.158]
81. Thasa, M. W. (2021). An Overview of the Traditional Uses, Phytochemicals, and Pharmacological Activities of Tempuyung (Sonchus arvensis L.). Journal of Pharmaceutical Sciences and Medicine (IJPSM), 6(6), 34-41. [DOI:10.47760/ijpsm.2021.v06i06.004]
82. Verma, S., & Dubey, R. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant science, 164(4), 645-655. [DOI:10.1016/S0168-9452(03)00022-0]
83. Viera, H., Bergamaschi, H., Angelocci, L., & Libardi, P. (1991). Performance of two bean cultivars under two water availability regimes. II. Stomatal resistance to vapour diffusion, transpiration flux density and water potential in the plant. Pesquisa Agropecuaria Brasileira, 24(9), 1045-1053.
84. Wahyuni, D. K., Purnobasuki, H., Kuncoro, E. P., & Ekasari, W. (2020). Callus induction of Sonchus arvensis L. and its antiplasmodial activity. African Journal of Infectious Diseases, 14(1), 1-7. [DOI:10.21010/ajid.v14i1.1]
85. Wahyuni, D. K., Rahayu, S., Purnama, P. R., Saputro, T. B., Wijayanti, N., & Purnobasuki, H. (2019). Morpho-anatomical structure and DNA barcode of Sonchus arvensis L. Biodiversitas Journal of Biological Diversity, 20(8). [DOI:10.13057/biodiv/d200841]
86. Walpola, B., & Arunakumara, K. (2010). Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. [DOI:10.4038/jas.v5i1.2319]
87. Wang, J. P., & Bughrara, S. S. (2007). Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei. Molecular genetics and genomics, 277, 571-587. [DOI:10.1007/s00438-007-0208-2]
88. Wu, R., & Garg, A. (2003). Engineering rice plants with trehalose-producing genes improves tolerance to drought, salt, and low temperature. ISB news report, 3-7.
89. Xiuli, Z. (2020). Study on effect of drought stress on synthesis of pharmacodynamic components of atracylodes chinensis and Its regulation mechanism. Master's Thesis, Changchun University of Traditional Chinese Medicine, Changchun, China, 14 (10): 6285.
90. Yahaya, M. A., & Shimelis, H. (2022). Drought stress in sorghum: Mitigation strategies, breeding methods and technologies-A review. Journal of Agronomy and Crop Science, 208(2), 127-142. [DOI:10.1111/jac.12573]
91. Yamada, K., & Osakabe, Y. (2018). Sugar compartmentation as an environmental stress adaptation strategy in plants. Seminars in Cell & Developmental Biology, [DOI:10.1016/j.semcdb.2017.12.015]
92. Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50. [DOI:10.3390/horticulturae7030050]
93. Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O. A., & Carol, P. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 218, 26-34. [DOI:10.1016/j.jplph.2017.07.009]
94. Zhang, T., Hu, Y., Zhang, K., Tian, C., & Guo, J. (2018). Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117, 13-19. [DOI:10.1016/j.indcrop.2018.02.087]
95. Žugić, A., Đorđević, S., Arsić, I., Marković, G., Živković, J., Jovanović, S., & Tadić, V. (2014). Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Industrial Crops and Products, 52, 519-527. [DOI:10.1016/j.indcrop.2013.11.027]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb