دوره 15، شماره 47 - ( پاییز 1402 )                   جلد 15 شماره 47 صفحات 122-113 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohtashami R. (2023). Genotype × Environment Interaction and Grain Yield Stability Analysis of Rice Genotypes (Oryza sativa L.). J Crop Breed. 15(47), 113-122. doi:10.61186/jcb.15.47.113
URL: http://jcb.sanru.ac.ir/article-1-1419-fa.html
محتشمی رهام. اثر متقابل ژنوتیپ در محیط و تجزیه پایداری عملکرد دانه لاین‌های برنج (.Oryza sativa L) پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (47) :122-113 10.61186/jcb.15.47.113

URL: http://jcb.sanru.ac.ir/article-1-1419-fa.html


تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کهگیلویه و بویراحمد، سازمان تحقیقات آموزش و ترویج کشاورزی، یاسوج، ایران
چکیده:   (1010 مشاهده)
چکیده مبسوط
مقدمه و هدف:
با توجه به افزایش مصرف سرانه برنج در کشور و نیاز به افزایش تولید برنج در واحد سطح، معرفی ارقام جدید کیفی، پر محصول و با ثبات عملکرد دانه امری بسیار مهم به حساب می‌آید. عملکرد دانه به ژنوتیپ و پاسخ آن به شرایط محیطی بستگی دارد. در راستای افزایش کمی و کیفی برنج این پژوهش به‌منظور ارزیابی برهم‌کنش ژنوتیپ × محیط و تعیین پایداری عملکرد دانه ژنوتیپ‌های برنج انجام شد.

مواد و روش‌ها: در این آزمایش 8 لاین کیفی برنج به همراه ارقام شاهد شامل کادوس، علی کاظمی و چمپای محلی در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در دو منطقه چرام و باشت طی سال‌های 1396 و 1397 اجرا گردید. در هر سال عملکرد ژنوتیپ‌های مورد آزمایش به‌طور جداگانه از طریق تجزیه واریانس ساده و با استفاده از روش دانکن مورد آزمون قرار ‌گرفت و در پایان سال دوم به‌منظور تعیین سازگاری تجزیه واریانس مرکب به‌عمل ‌آمد. برای تجزیه پایداری لاین‌ها، از روش‌های واریانس پاِیداری شوکلا، ضریب تغییرات محیطی فرانسیس و کاننبرگ، اکووالانس ریک، انحراف از خط رگرسیون ابرهات و راسل، ضریب رگرسیونی فینلی و ویلکینسون و ضریب تشخیص پینتوس استفاده شد.
یافته‌ها: نتایج حاصله حاکی از تنوع زیادی بین ژنوتیپ‌های مورد بررسی از نظر عملکرد دانه و دیگر صفات زراعی بود. تجزیه واریانس مرکب نشان داد که بین سال‌ها تفاوت معنی‌داری در سطح احتمال 5 درصد وجود دارد. تجزیه پایداری ژنوتیپ‌ها بوسیله محاسبه پارامترهای پایداری نشان می‌دهد که بیش‌ترین پایداری مربوط به رقم چمپای محلی و لاین‌های 7، 8، 5 و 6 بوده است. بر پایه شاخص ابرهات و راسل ژنوتیپ‌های 7،6 و 8 و رقم چمپای محلی در هر دو محیط آزمایشی مطلوب بودند. از نظر پارامتر پایداری اکووالانس ریک، رقم چمپای محلی و ژنوتیپ 6 و 5 برتر بودند. براساس نتایج تجزیه و مقایسه میانگین تیمارها، برتری عملکرد دانه مربوط به لاین‌های 7 و 5 با متوسط عملکرد 9/60 و 8/85 تن در هکتار بوده است. لاین‌های مذکور به‌­دلیل عملکرد، راندمان تبدیل، درصد برنج کامل بالا و میزان آمیلوز متوسط، ثبات عملکرد و سازگاری محیطی مناسب، به‌عنوان ژنوتیپ‌های برتر تشخیص داده شدند.
نتیجه‌گیری: بر پایه نتایج حاصل از روش‌های پایداری لاین‌های شماره 7 و 5 به‌ترتیب با متوسط عملکرد 9/60 و 8/85 تن در هکتار و داشتن واریانس پایداری، ضریب تغییرات محیطی و واریانس درون مکانی کم‌تر از یک، همچنین ضریب خط رگرسیونی معادل یک به‌عنوان ژنوتیپ‌های پایدار برای هر دو منطقه و سایر مناطق مشابه قابل توصیه می‌باشند.
واژه‌های کلیدی: برهم‌کنش، رقم و لاین، کیفی
متن کامل [PDF 1981 kb]   (415 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1401/7/10 | پذیرش: 1401/12/7

فهرست منابع
1. Ali, S.S., S.J.H. Jafari. F. A. Faiz and M. Eutt. (1992). Stability analysis for irrigated rice yield. IRRI Nows Letter 17(5): 5-6.
2. Annicchiarico, P. (2002). Genotype x environment interactions - challenges and opportunities for plant breeding and cultivar recommendations, FAO. Rome.
3. Bachireddy, V. R., R. JR. Payne, K. L. Chin and M. S. Kang. (1992). Conventional selection versus methods that use genotype × environmental interaction in sweet corn trials. Horticultural sciences, 27:436-438. [DOI:10.21273/HORTSCI.27.5.436]
4. Becher, H. C., and J. Leon. (1988). Stability analysis in plant. Plant Breeding. 101:1-23. [DOI:10.1111/j.1439-0523.1988.tb00261.x]
5. Das, S., R.C. Misra, M.C. Patnaik and S.R. Das. (2010). G × E interaction, adaptability and yield stability of midearly rice genotypes. Indian Journal of Agricultural Research, 44:104-111.
6. Eberhart, S. A. and W. S. Russel. (1966). Stability parameters for comparing varieties. Crop Science, 6:36-40. [DOI:10.2135/cropsci1966.0011183X000600010011x]
7. Farshadfar, E. 1998. Application of Biometrical Genetics in Plant Breeding. (Second Ed.). Tagh Bostan publisher. Razi University Publications. Kermanshah, Iran. (In Persian).
8. Fernandez, G. C. J. (1991). Analysis of genotype × environment interaction by stability estimates. Horticultural Science, 27: 947-950. [DOI:10.21273/HORTSCI.26.8.947]
9. Finlay, K. W. and G. M. Wilkinson. (1963). The analysis adaptation in the plant breeding programs. Australian Journal of Agricultural Research, 14: 772-745. [DOI:10.1071/AR9630742]
10. Francis, T. R. and L. W. Kanenberg. (1987). Yield stability studies in short- season maize. A descriptive method for genotypes. Canadian Journal of Plant Science, 58:429-434.
11. Gravois, K.A. and M.C. Nenen. (1993). Genetic relationships among and selection for rice yield and components. Crop Science, 33: 249-252. [DOI:10.2135/cropsci1993.0011183X003300020006x]
12. Hill, J. (1975). Genotype - environment interaction, a challenge for plant breeding. Journal of Agricultural Science, (Camb) 85: 477-493. [DOI:10.1017/S0021859600062365]
13. Huang, M., L. Jiang, Y. Zou and W. Zhang. (2013). On -farm assessment of effect of low temperature at seedling stage on early -season rice quality. Journal of Field Crops Research, 141: 63 -68. [DOI:10.1016/j.fcr.2012.10.019]
14. Juliano, B.O. (1971). Simplified assay for milled -rice amylose. Cereal Science Today, 16: 334-360. Kang, M. S. (1991). Modified rank-sum method for selecting high yielding, stable crop genotypes. Cereal Research Communications, 19: 361-364.
15. Kang, M. S. (1993). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85: 754-757. [DOI:10.2134/agronj1993.00021962008500030042x]
16. Kang, M. S. and D. P. Gorman. (1989). Genotypes × environnements interaction in maize. Agronomy Journal, 81: 662-664. [DOI:10.2134/agronj1989.00021962008100040020x]
17. Kang, M. S. and H. N. Pham. (1991). Simultaneous selection for high yielding and stable crop genotypes. Agronomy Journal, 83:161-165. [DOI:10.2134/agronj1991.00021962008300010037x]
18. Kang, M.S. (2004). Breeding: Genotype by Environment Interaction. In: Encyclopedia of Plant and Crop Science, Goodman, R.M. (Ed.). Marcel Dekker, New York, ISBN: 0-4913-3438-6, pp: 218-221. [DOI:10.1081/E-EPCS-120010525]
19. Khorasany, E., L. Fahmideh, N. A. Babaeian and Gh. Ranjbar. (2019). Studying some of the agronomy traits and yield stability of rice genotypes. Journal of Crop Breeding, 11(31): 196-208. (In Persian). [DOI:10.29252/jcb.11.31.196]
20. Lin, C. S. and M. R. Binns. (1985). Procedural approach for assessing cultivar × location × data pairwise genotypes/ environments of test cultivars with check. Canadian Journal of Plant Science, 65:1065-1071. [DOI:10.4141/cjps85-136]
21. Lin, C. S. and M. R. Binns. (1986). Stability analysis. Crop Science, 26:894-899. [DOI:10.2135/cropsci1986.0011183X002600050012x]
22. Martin J. and A. Alberts. (2004). A comparison of statistical methods to describe x environment interaction and yield stability in multilocation Maize trials. Thesis presented in accordance with the requirements for the degree Magister Scientiae Agriculture in the Faculty of Agriculture, Department of Plant Sciences (Plant Breeding) at the University of the Free State. University of the Free State Bloemfontein.
23. Matus-Cadiz, M.A., P. Hucl, C. E. Perron and R. T. Tyler. (2003). Genotype × environment interaction for grain color in hard white spring wheat. Crop Science, 43: 219-226. [DOI:10.2135/cropsci2003.2190]
24. Messina, C., G. Hammer, Z. Dong, D. Podlich and M. Cooper. (2009). Modeling crop improvement in a G × E × M frame work via gene-trait-phenotype relationships. In: Sadras, V. O., Calderini, D. (Eds.), Crop Physiology: Applications for Genetic Improvement and Agronomy. Elsevier, Netherlands, pp. 235-265. [DOI:10.1016/B978-0-12-374431-9.00010-4]
25. Mohtashami, R., GH. Nemat zade, M.T. Asad and F. Tavasoli Larijani. (1999). Determination of rice qualitative traits and the correlation between genotypic and phenotypic correlations of these qualitative traits using causality analysis. Summary of articles of the fifth Iranian congress of Plant breeding and crop production. Karaj. Iran, 86 pp.
26. Momeni-Zadeh, T., H. Najafi Zarini, M. Norouzi and A. R. Nabipour. (2018). A consideration on genotype and environment interactions and stability of grain yield in promising lines of rice (Oryza sativa L.). Journal of Crop Breeding, 10(27): 135-142 (In Persian). [DOI:10.29252/jcb.10.27.135]
27. Pinthus, J. M. (1973). Estimate of genotype value: a proposed method. Euphytica, 22:121-123. [DOI:10.1007/BF00021563]
28. Prabnakorn, S., M. Shreedhar, F.X. Suryadi and F. Charlotte. (2018). Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Science of The Total Environment, 621: 108-119. [DOI:10.1016/j.scitotenv.2017.11.136]
29. Rahimsouroush, H., B. Rabiei, M. Nahvi and M. Ghodsi. (2007). Study of some morphological, qualitative traits and yield stability of Rice genotypes (Oryza Sativa L.). Journal of Pajouhesh -va - Sazandegi, 20: 25 -32 (In Persian).
30. Rasyad, A. and B. Anhar. (2007). Genotype × environment interaction and yield stability of several yield components among adapted rice cultivars in West Sumatera. Zuriat, 18(2): 100-105. [DOI:10.24198/zuriat.v18i2.6699]
31. Reddy, K.R., A.S. Zakiuddin and K.R. Bhattacharya. (1993). The fine structure of rice starch amylopectin and its relation to the texture of cooked rice. Carbohydrate Polymorphism, 22: 267-275. [DOI:10.1016/0144-8617(93)90130-V]
32. Romer, T.H. (1917). Sind die ertragreicheren sorten ertragssicherer? DGL - Mitt, 32:87 -89.
33. Sattari, A., M. Solouki, N. Bagheri, B. Fakheri and A. Nabipour. (2019). Analysis of genotype by environment interaction and grain yield stability of rice (Oryza sativa L.) genotypes in mazandaran province. Journal of Crop Breeding, 11(31): 1-10. (In Persian). [DOI:10.29252/jcb.11.31.1]
34. Shukla, G. H. (1972). Some statistical aspects for partitioning genotype- environment component of variability. Heredity, 29:237-245. [DOI:10.1038/hdy.1972.87]
35. Singh, R. K., U.S. Singh and G.S. Khush. (2000). Aromatic rices. Oxford and IBH Publishing Co. Pvt. Lyd. New Delhi, Calcutta. 300 pp.
36. Voltas, J., F. van Eeuwijk, E. Igartua, L.F. Garcia Del Moral, J.L. Molina- Cano and I. Romagosa. (2002). Genotype by environment interaction and adaptation in barley breeding: basic concepts and methods of analysis. The Haworth Press, NY, pp.205-241.
37. Yan, W., L. A. Hunt, Q. Sheng and Z. Szlavnics. (2000). Cultivar evaluation and mega-environment investigations based on the GGE biplot. Crop Science, 40‎: 597-605. [DOI:10.2135/cropsci2000.403597x]
38. Yan, W. and L.A. Hunt. (2001). Interpretation of genotype 3 environment interaction for winter wheat yield in Ontario. Crop Science, 41: 19-25. [DOI:10.2135/cropsci2001.41119x]
39. Wricke, G. (1962). Uber eine methode zur refassung der okologischen streubretite in feldversuchen, flazenzuecht, 47: 92-96.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb