1. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. [
DOI:10.3390/agronomy7010018]
2. Arzansh, M. H., BENNY, A. N., Ghorbanly, M. L., & Shahbazi, M. (2012). Effect of plant growth promoting rhizobacteria on growth parameters and levels of micronutrient on rapeseed cultivars under salinity stress. Electronic Journal of Soil Management and Sustainable Production, 2 (2), 153-163 (In Persian).
3. Asghari, A., & Fallahi, H. (2018). Assesment of Salinity Tolerance in Some Canola Cultivars Using Morphophysiologic Traites and ISSR Markers. Journal of Crop Breeding, 9(24), 166-178 (In Persian). [
DOI:10.29252/jcb.9.24.166]
4. Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and experimental Botany, 63 (1-3), 266-273. [
DOI:10.1016/j.envexpbot.2007.11.008]
5. Ashraf, M., & McNeilly, T. (2004). Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2), 157-174. [
DOI:10.1080/07352680490433286]
6. Asilan, K. S. (2019). The effect of foliar application of calcium silicate on salt stress tolerance of two Canola (Brassica napus L.) varieties. Journal of Crops Improvement, 21(4), 353-366 (In Persian).
7. Azimi Gandomani, M., Dehdari, A., Faraji, H., Movahhedi Dehnavi, M., & Alinaghizadeh, M. (2013). Evaluation of chlorophyll fluorescence and physiological characteristics of spring rapeseed (Brassica rapa L.) cultivars under salt stress. Journal of Plant Productions, 35(4), 1-16 (In Persian).
8. Azizi, M., Abdolzadeh, A., Mehrabanjobeni, P., & Sadeghipour, H. (2015). Effects of silicon application to increase salinity tolerance through reduction of oxidative stress in Festuca arundinacea. Journal of Rangeland, 9(1), 43-54 (In Persian).
9. Bagheri, F., Pirdashti, H., Nematzadeh, G. A., & Yaghoubian, Y. (2024). screening of some 10th generation of rice (Oryza sativa L.) mutant lines using agronomic and biochemical evaluations in saline conditions. Journal of Crop Breeding, 16(49), 153-170. [
DOI:10.61186/jcb.16.49.153]
10. Bybordi, A. (2010). Effects of salinity on yield and component characters in canola (Brassica napus L.) cultivars. Notulae Scientia Biologicae, 2(1), 81-83. [
DOI:10.15835/nsb213560]
11. Chakraborty, K., Sairam, R. K., & Bhaduri, D. (2016). Effects of different levels of soil salinity on yield attributes, accumulation of nitrogen, and micronutrients in Brassica spp. Journal of Plant Nutrition, 39(7), 1026-1037. [
DOI:10.1080/01904167.2015.1109105]
12. Faraji, A., & Hatamzadeh, A. (2009). Evaluation of seed yield potential and traits in species of Brassica (B. napus, B. Rapa, B. juncea) under rain fed conditions in Gonbad area. Journal of Soil Water and Soil Science, 13: 47-52
13. Gharechaei, N., Paknejad, F., Rad, A. H. S., Tohidloo, G., & Jabbari, H. (2019). Change in oil fatty acids composition of winter oilseed rape genotypes under drought stress and different temperature regimes. Plant, Soil and Environment, 65 (10), 503-507. [
DOI:10.17221/519/2019-PSE]
14. Gholizadeh Sarcheshmeh, P., Amiri Oghan, H., Shekari, F., & Gholizadeh, A. (2024). Combining ability and heterosis of spring oilseed rape genotypes under normal irrigation and drought stress conditions. Journal of Crop Breeding. 16(49), 74-85 (In Persian). [
DOI:10.61186/jcb.16.49.74]
15. Gyawali, S., Parkin, I. A., Steppuhn, H., Buchwaldt, M., Adhikari, B., Wood, R., ... & Hegedus, D. D. (2019). Seedling, early vegetative, and adult plant growth of oilseed rapes (Brassica napus L.) under saline stress. Canadian Journal of Plant Science, 99, 927-941. [
DOI:10.1139/cjps-2019-0023]
16. Hoffmann, W. A., & Poorter, H. (2002). Avoiding bias in calculations of relative growth rate. Annals of Botany, 90(1), 37-42. [
DOI:10.1093/aob/mcf140]
17. Hosseini, S. J., Tahmasebi-Sarvestani, Z., Mokhtassi-Bidgoli, A., Keshavarz, H., Kazemi, S., Khalvandi, M., ... & Abassian, A. (2023). Do various levels of salinity change chlorophyll fluorescence, nutrient uptake, and physiological characteristics of Mentha ecotypes? Industrial Crops and Products, 203, 117-199. [
DOI:10.1016/j.indcrop.2023.117199]
18. Jabbari, H., Khosh Kholgh Sima, N. A., & Shirani Rad, A. H. (2017). Changes in the oil fatty acids composition of rapeseed cultivars under drought stress conditions. Applied Field Crops Research, 30(3), 66-81 (In Persian).
19. Kabousi, K., Nodehi, A., and Shamyati, M. (2019). The effects of salinity stress and organic fertilizer on yield, oil and water use efficiency of different cultivars of canola. Water Engineering, 11(39), 87-100 (In Persian).
20. Kazemeini, S. A., Alborzei Hagighi, M. H., & Pirasteh-Anosheh, H. (2016). Evaluating salinity tolerance at different growth stages in rapeseed (Brassica napus) cv. Talaye. Environmental Stresses in Crop Sciences, 9(2), 185-193 (In Persian).
21. Kazemi, S., Rafati Alashti, M. & Hosseini, S.J. (2022). Response of biochemical and physiological properties of camellia (Camelina sativa L.) to foliar application of calcium and silicon nanoparticles. Silicon, 14, 6817-6828. [
DOI:10.1007/s12633-021-01464-y]
22. Khayat, M. (2016). Analysis main effective traits on grain yield of spring canola genotypes by path 74 software under Khuzestan climate condition. Iranian Journal of Dynamic Agriculture, 13(1): 1-10 (In Persian).
23. Lee, S. C., Lim, M. H., Kim, J. A., Lee, S. I., Kim, J. S., Jin, M., ... & Park, B. S. (2008). Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Molecules and Cells, 26(6), 595-605. [
DOI:10.1016/S1016-8478(23)14042-8]
24. Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., & Zhang, C. (2017). Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in Rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 8, 1671. [
DOI:10.3389/fpls.2017.01671]
25. Mansouri, I., Najafi Zarini, H., Babeian Jelodar, N., & Pakdin, A. (2019). Evaluation of salt tolerance in some Canola (Brassica napus L.) genotypes under normal and salt stress conditions. Journal of Crop Breeding, 11(30), 23-36 (In Persian). [
DOI:10.29252/jcb.11.30.23]
26. Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983. [
DOI:10.3390/agriculture11100983]
27. Moharramnejad, S., Bandehagh, A., & Shafiei, Y. (2021). Assessment of superoxide dismutase activity, photosynthetic proteins involved and sodium and potassium contents in Maize Line seedlings under salinity stress. Journal of Crop Breeding, 13(37), 185-196 (In Persian). [
DOI:10.52547/jcb.13.37.185]
28. Mohtashami, R., Dehnavi, M. M., Balouchi, H., & Faraji, H. (2020). Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agricultural Water Management, 232, 106046. [
DOI:10.1016/j.agwat.2020.106046]
29. Moradi, M., Ebrahimi A., and Ghodrati, G.H. (2017). Evolution effect of salt stress, growth, physiological characteristic and seed yield of spring canola cultivars (Brassica napus L). Journal of Plant Production Science, 6(2), 1-12 (In Persian).
30. Pattanagul, W., & Thitisaksakul, M. (2008). Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian Journal of Experimental Biology, 46, 736-742.
31. Peydayesh, M., and Mamghani, R. (2013). Correlation and path analysis of yield components with morphological and phenological traits in canola cultivars (Brassica napus L.). Scientific Journal of Agronomy and Plant Breeding, 1, 49-55 (In Persian).
32. Raboanatahiry, N., Li, H., Yu, L., & Li, M. (2021). Rapeseed (Brassica napus): processing, utilization, and genetic Improvement. Agronomy, 11(9), 1776. [
DOI:10.3390/agronomy11091776]
33. Rahnama, A. (2013). Comparison the yield, yield component of canola varieties and relative resistance in south salinity soil of Khouzestan province. Journal of Applied Crop Research, 99, 70-80 (In Persian).
34. Rameeh, V. (2012). Ions uptake, yield and yield attributes of rapeseed exposed to salinity stress. Journal of Soil Science and Plant Nutrition, 12(4), 851-861. [
DOI:10.4067/S0718-95162012005000037]
35. Ranjbar, G., & Pirasteh-Anosheh, H. (2015). A glance to the salinity research in Iran with emphasis on improvement of field crops production. Iranian Journal of Crop Sciences, 17(2), 165-178 (In Persian).
36. Rostami Ahmadvandi, H., & Faghihi, A. (2021). Adapted oilseed crops with the ability to grow economically in dryland conditions in Iran. Agrotechniques in Industrial Crops, 1(3), 122-128.
37. Sabagh, A. E., Hossain, A., Barutçular, C., Islam, M. S., Ratnasekera, D., Kumar, N., ... & da Silva, J. A. T. (2019). Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: a critical review. Australian journal of Crop Science, 13(1), 88-97.
38. Santangeli, M., Capo, C., Beninati, S., Pietrini, F., & Forni, C. (2019). Gradual exposure to salinity improves tolerance to salt stress in Rapeseed (Brassica napus L.). Water, 11, 1667. [
DOI:10.3390/w11081667]
39. Shafi, M., Bakht, J., Khan, M. J., Khan, M. A., & Anwar, S. (2010). Effect of salinity on yield and ion accumulation of wheat genotypes. Pakistan Journal of Botany, 42 (6), 4113-4121.
40. Shahbazi, M., Kiani, A. R., & Raeisi, S. (2011). Determination of salinity tolerance threshold in two rape seed (Brassica napus L.) cultivars. Iranian Journal of Crop Sciences, 13(1), 18-31 (In Persian).
41. Shahid, S.A., Zamanand, M., and. Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, 146. [
DOI:10.1007/978-3-319-96190-3_1]
42. Shelke, D. B., Nikalje, G. C., Chambhare, M. R., Zaware, B. N., Penna, S., & Nikam, T. D. (2019). Na+ and Cl- induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech, 9(3), 91. [
DOI:10.1007/s13205-019-1599-6]
43. Tahmasebpour, B., Sabzi Nojadeh, M., & Esmaeilpour, M. (2018). Salt stress tolerance of spring canola (Brassica napus L.) cultivars. International Journal of Plant Biology & Research, 6 (4), 1098 (In Persian).
44. Tajali, T., Bagheri, A. R., & Hosseini, M. (2011). Effect of salinity on yield and yield components of five canola cultivar. Plant Ecophysiology, 3(9), 77-90 (In Persian).
45. Wei-hua, L. O. N. G., Hui-ming, P. U., Jie-fu, Z. H. A. N. G., Cun-kou, Q. I., & Xue-kun, Z. H. A. N. G. (2013). Screening of Brassica napus for salinity tolerance at germination stage. Chinese Journal of Oil Crop Sciences, 35(3), 271.
46. Yang, Y., Zheng, Q., Liu, M., Long, X., Liu, Z., Shen, Q., & Guo, S. (2012). Difference in sodium spatial distribution in shoot two canola cultivars under salinity stress. Plant cell physiology, 53, 1083-1092. [
DOI:10.1093/pcp/pcs055]
47. Zhang, X., Lu, G., Long, W., Zou, X., Li, F., & Nishio, T. (2014). Recent progress in drought and salt tolerance studies in Brassica crops. Breeding Science, 64, 60-73. [
DOI:10.1270/jsbbs.64.60]
48. Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609. [
DOI:10.3390/ijms22094609]