دوره 14، شماره 44 - ( زمستان 1401 )                   جلد 14 شماره 44 صفحات 32-18 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alizadeh Momen M, Khazaei H, Nabati J. (2022). Effect of Salinity Stress on Chickpea (Cicer ariethinum L.) Genotypes in Seedling Stage under Hydroponic Conditions. jcb. 14(44), 18-32. doi:10.52547/jcb.14.44.18
URL: http://jcb.sanru.ac.ir/article-1-1349-fa.html
علیزاده مومن محمدرضا، خزاعی حمیدرضا، نباتی جعفر. اثر سطوح تنش شوری بر ژنوتیپ‌های نخود (.Cicer ariethinum L) در مرحله گیاهچه‌ای در شرایط هیدروپونیک پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (44) :32-18 10.52547/jcb.14.44.18

URL: http://jcb.sanru.ac.ir/article-1-1349-fa.html


گروه اگروتکنولوژی دانشگاه فردوسی مشهد
چکیده:   (1250 مشاهده)
چکیده مبسوط
مقدمه و هدف: تنش شوری یک چالش جهانی در تولید محصولات زراعی است. نخود در دامنه وسیعی از شرایط اقلیمی رشد می‌کند و حساس به تنش شوری است. تنش شوری باعث ایجاد تنش‌های اسمزی، یونی و ثانویه می‌شود و فرآیندهای متابولیکی را در گیاهان مختل می‌کند و درنهایت باعث کاهش عملکرد گیاه می‌شود. استفاده از ارقام نخود متحمل به شوری به­دلیل تثبیت بیولوژیکی نیتروژن می‌تواند به افزایش تولید و بهره‌وری در زمین‌های شور کمک کند. هدف از این مطالعه بررسی اثر تنش شوری بر ویژگی‌های فیزیولوژیک گیاهچه‌های 17 ژنوتیپ نخود بود.
مواد و روش‌ها: به‌منظور بررسی تحمل به شوری ژنوتیپ‌های نخود آزمایشی به‌صورت کرت‌های خردشده در قالب طرح پایه بلوک‌‌های کامل تصادفی با سه تکرار در دانشگاه فردوسی مشهد روی 17 ژنوتیپ نخود کابلی به­عنوان کرت فرعی و دو سطح شوری (۱۲ وdS.m-1۱۶) و شاهد (dS.m-10/5) به­عنوان کرت اصلی اجرا گردید. دو هفته بعد از کشت، تنش شوری اعمال شد و چهار هفته پس از اعمال تنش، صفات نشت الکترولیت‌ها، رنگ‌دانه‌های فتوسنتزی، فنل کل، کربوهیدرات‌های محلول، پرولین، پتانسیل اسمزی، درصد بقاء، میزان سدیم و پتاسیم اندام‌های هوایی و شاخص تحمل به شوری اندازه‌گیری شدند.
یافته‌ها: در تمامی ژنوتیپ‌ها با افزایش سطح تنش شوری درصد بقاء کاهش و درصد نشت الکترولیت‌ها افزایش یافت. در سطح تنش شوری dS.m-116 ژنوتیپ‌های MCC72، MCC108 و MCC112 به‌ترتیب با 86/5، 82/6 و 100 درصد بیشترین درصد بقاء را داشتند. در تنش شوری dS.m-116 ژنوتیپ MCC108 با 82 درصد کمترین درصد نشت الکترولیت‌ها را نشان داد و ژنوتیپ‌های MCC12، MCC58 و MCC27 کمترین افزایش درصد نشت الکترولیت‌ها را نسبت به شاهد داشتند. ژنوتیپ‌ها واکنش متفاوتی نسبت به افزایش میزان شوری از نظر محتوای رنگ‌دانه‌های فتوسنتزی نشان دادند. در ژنوتیپ‌های MCC92، MCC108، MCC112 و MCC296 با افزایش تنش شوری به dS.m-116، بر محتوای کلروفیل a آن‌ها افزوده شد. محتوای کربوهیدرات‌های محلول و پرولین در تمامی ژنوتیپ‌ها با افزایش تنش شوری از شاهد به dS.m-116 افزایش یافت و پتانسیل اسمزی منفی‌تر گردید.
نتیجه‌گیری: به‌طورکلی بین ژنوتیپ‌های نخود تنوع زیادی از نظر صفات فیزیولوژیک وجود داشت تجزیه خوشه‌ای ژنوتیپ‌ها را به پنج گرده تقسیم کرد که مقایسه میانگین گروه‌ها با میانگین کل نشان داد که درصد بقاء در ژنوتیپ‌های گروه چهارم شامل MCC108 و MCC112 نسبت به میانگین کل برتر بودند، بنابراین مطالعات تکمیلی در شرایط مزرعه روی این دو ژنوتیپ توصیه می‌گردد.
متن کامل [PDF 2489 kb]   (586 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1400/11/16 | ویرایش نهایی: 1401/10/10 | پذیرش: 1401/2/27 | انتشار: 1401/10/11

فهرست منابع
1. Adil, H.I., H.I. Cetin, M.E. Yener and A. Bayindirh. 2007. Subcritical (carbon dioxide + ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. The Journal of Supercritical Fluids, 43: 55-63. [DOI:10.1016/j.supflu.2007.04.012]
2. Ahammed, G.J., Y. Li, X. Li, W.Y. Han and S. Chen. 2018. Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. Journal of Plant Growth Regulation, 37(4): 1349-1356. [DOI:10.1007/s00344-018-9849-0]
3. Ashraf, M. and T. McNeilly. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2): 157-174. [DOI:10.1080/07352680490433286]
4. Askary, M., A.A. Maghsoudi Moud and V.R. Saffari. 2013. Investigation of some physiological characteristics and grain yield of Corn (Zea mays L.) hybrids under salinity stress. Journal of Crop Production and Processing, 9(3): 93-103 (In Persian).
5. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free prolinee for water-stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
6. Berger, E., O. Fror and R.B. Schafer. 2019. Salinity impacts on river ecosystem processes: a critical mini-review. Philosophical Transactions of the Royal Society B, 374(1764): 20180010. [DOI:10.1098/rstb.2018.0010]
7. Bulseco, A.N., A.E. Giblin, J. Tucker, A.E. Murphy, J. Sanderman, K. Hiller‐Bittrolff and J.L. Bowen. 2019. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Global Change Biology, 25(10): 3224-3241. [DOI:10.1111/gcb.14726]
8. Chaudhary, D. and S.S. Sindhu. 2017. Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinculation of ACC deaminase-containing rhizospheric bacteria with Mesorhizobium strains. Legume Research-An International Journal, 40(1): 80-86. [DOI:10.18805/lr.v0iOF.9382]
9. Dashti, H., W.M. Westler, M. Tonelli, J.R. Wedell, J.L., Markley and H.R. Eghbalnia. 2017. Spin system modeling of nuclear magnetic resonance spectra for applications in metabolomics and small molecule screening. Analytical chemistry, 89(22): 12201-12208. [DOI:10.1021/acs.analchem.7b02884]
10. Dere, S., T. Gines and R. Sivaci. 1998. Spectrophotometric determination of chlorophyll - a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22: 13-17.
11. Dhingra, H.R. 2014. Effect of salinity stress on morpho-physiological, biochemical and yield characters of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Indian Journal of Plant Physiology, 19(4): 393-398. [DOI:10.1007/s40502-014-0118-3]
12. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature. 168:167. [DOI:10.1038/168167a0]
13. FAOSTAT. 2018. Food and Agriculture Organization of the United Nations Rome. https://www.fao.org/home/en
14. Fatiha, K., H. Abdelkrim and B. Abdelkader. 2019. Effect of salinity on morpho-physiological parameters and nitrogen content in chickpea (Cicer arietinum L.). Agricultural Science and Technology, 11(2): 154-160. [DOI:10.15547/ast.2019.02.025]
15. Firuzeh, R., N.R.A. Khavarinejad, F. Najaf and S. Saadatmand. 2016. Effect of gibberellin on the activity of antioxidant enzymes in savory plant (Satureja hortensis L.) under salt stress. Journal of Plant Process and Function, 5 (16): 45-56.
16. Fischer, R.A. and R. Maurer. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29: 897-907. [DOI:10.1071/AR9780897]
17. Havaux, M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sciences, 3: 147-151. [DOI:10.1016/S1360-1385(98)01200-X]
18. Hoagland, D.R. and D.L. Arnon. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular. 347.
19. Ibrahim, M.H., H.Z.E. Jaafar, A. Rahmat and Z.A. Rahman. 2012. Involvement of nitrogen in flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip fatimah). International Journal of Molecular Sciences, 13: 393-408. [DOI:10.3390/ijms13010393]
20. Jabari, F., A. Ahmadi and K. Poustini. 2006. Relationships between anti-oxidant enzymes activates and chlorophyll content of different wheat cultivars. Journal of Agricultural Science, 37(1): 307-316.
21. Jomea-Bidokhti, A. 2013. The study of growth characteristics, yield and grain yield components of chickpea (Cicer arietinum L.) cultivars under the effect salinity. M.Sc. Thesis. University of Birjand Iran. (In Persian).
22. Kafi, M., A. Bagheri, J. Nabati, M. Zare Mehrjerdi and A. Masomi. 2011. Effect of salinity on some physiological variables of 11chickpea genotypes under hydroponic conditions. Science Technology Greenhouse Culture-Isfahan University Technology, 1: 55-70. (In Persian).
23. Katerji, N., J.W. van Hoorn, A. Hamdy and M. Mastrorilli. 2003. Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agriculture Water Management, 62: 37-66. [DOI:10.1016/S0378-3774(03)00005-2]
24. Kovac, D., B. Vesela, K. Klem, K. Vecerova, Z.M. Kmecova, J. Penuelas and O. Urban. 2020. Correction of PRI for carotenoid pigment pools improves photosynthesis estimation across different irradiance and temperature conditions. Remote Sensing of Environment, 244: 111834. [DOI:10.1016/j.rse.2020.111834]
25. Kumar, N. 2018. Physiological responses of chickpea (Cicer arietinum L.) cultivars under saline irrigation. PhD Thesis, Chaudhary Charan Singh Haryana Agricultural University.83 pp.
26. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444: 139-158. [DOI:10.1016/j.abb.2005.10.018]
27. Muchate, N.S., G.C. Nikalje, N.S. Rajurkar, P. Suprasanna and T.D. Nikam. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82(4): 371-406. [DOI:10.1007/s12229-016-9173-y]
28. Mudgal, V., N. Madaan, A. Mudgal and S. Mishra. 2009. Changes in growth and metabolic profile of chickpea under salt stress. Applied of Biosciences, 23: 1436-1446.
29. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645-663. [DOI:10.1111/j.1469-8137.2005.01487.x]
30. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911]
31. Ozaktan, H., C.Y. Ciftci, M.D. Kaya, S. Uzun, O. Uzun and G. Akdogan. 2018. Chloride salts inhibit emergence and seedling growth of chickpea rather than germination. Legume Research-An International Journal, 41(1): 60-66.
32. Parvaiz, A. and S. Satyawati. 2008. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environmental, 54: 89-99. [DOI:10.17221/2774-PSE]
33. Premachandra, G.S., H. Saneoka, M. Kanaya and S. Ogata. 1991. Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. Journal of Experimental Botany, 42: 167-171. [DOI:10.1093/jxb/42.2.167]
34. Prochazkova, D., R. Sairam, G. Srivastava and D. Singh. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161: 765-771. [DOI:10.1016/S0168-9452(01)00462-9]
35. Roy, F., J. Boye and B. Simpson. 2010. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International, 43: 432-42. [DOI:10.1016/j.foodres.2009.09.002]
36. Sharma, H.C., C.P. Srivastava, C. Durairaj and C.L.L. Gowda. 2010. Pest management in grain legumes and climate change. In: Yadav, S.S., D.L. McNeil, R. Redden, and S.A. Patil, (eds), Climate change and management of cool season grain legume crops. 115-140 pp., Springer, Dordrecht. [DOI:10.1007/978-90-481-3709-1_7]
37. Shi, D. and Y. Sheng. 2004. Effect of various salts alkaline mixed stress conditions on sunflower seedling and analysis of their stress factors. Environmental and Experimental Botany, 54: 8-21. [DOI:10.1016/j.envexpbot.2004.05.003]
38. Silva, P. and H.Geros. 2009. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signaling and Behavior, 4: 718-726. [DOI:10.4161/psb.4.8.9236]
39. Singleton, V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16 (3): 144-158.
40. Tandon, H.L.S. 1995. Methods of analysis of soils, plants, water andfertilizers. FDCO, New Delhi.
41. Adil, H.I., H.I. Cetin, M.E. Yener and A. Bayindirh. 2007. Subcritical (carbon dioxide + ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. The Journal of Supercritical Fluids, 43: 55-63. [DOI:10.1016/j.supflu.2007.04.012]
42. Ahammed, G.J., Y. Li, X. Li, W.Y. Han and S. Chen. 2018. Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. Journal of Plant Growth Regulation, 37(4): 1349-1356. [DOI:10.1007/s00344-018-9849-0]
43. Ashraf, M. and T. McNeilly. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23(2): 157-174. [DOI:10.1080/07352680490433286]
44. Askary, M., A.A. Maghsoudi Moud and V.R. Saffari. 2013. Investigation of some physiological characteristics and grain yield of Corn (Zea mays L.) hybrids under salinity stress. Journal of Crop Production and Processing, 9(3): 93-103 (In Persian).
45. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free prolinee for water-stress studies. Plant and Soil, 39: 205-207. [DOI:10.1007/BF00018060]
46. Berger, E., O. Fror and R.B. Schafer. 2019. Salinity impacts on river ecosystem processes: a critical mini-review. Philosophical Transactions of the Royal Society B, 374(1764): 20180010. [DOI:10.1098/rstb.2018.0010]
47. Bulseco, A.N., A.E. Giblin, J. Tucker, A.E. Murphy, J. Sanderman, K. Hiller‐Bittrolff and J.L. Bowen. 2019. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Global Change Biology, 25(10): 3224-3241. [DOI:10.1111/gcb.14726]
48. Chaudhary, D. and S.S. Sindhu. 2017. Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinculation of ACC deaminase-containing rhizospheric bacteria with Mesorhizobium strains. Legume Research-An International Journal, 40(1): 80-86. [DOI:10.18805/lr.v0iOF.9382]
49. Dashti, H., W.M. Westler, M. Tonelli, J.R. Wedell, J.L., Markley and H.R. Eghbalnia. 2017. Spin system modeling of nuclear magnetic resonance spectra for applications in metabolomics and small molecule screening. Analytical chemistry, 89(22): 12201-12208. [DOI:10.1021/acs.analchem.7b02884]
50. Dere, S., T. Gines and R. Sivaci. 1998. Spectrophotometric determination of chlorophyll - a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22: 13-17.
51. Dhingra, H.R. 2014. Effect of salinity stress on morpho-physiological, biochemical and yield characters of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Indian Journal of Plant Physiology, 19(4): 393-398. [DOI:10.1007/s40502-014-0118-3]
52. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature. 168:167. [DOI:10.1038/168167a0]
53. FAOSTAT. 2018. Food and Agriculture Organization of the United Nations Rome. https://www.fao.org/home/en
54. Fatiha, K., H. Abdelkrim and B. Abdelkader. 2019. Effect of salinity on morpho-physiological parameters and nitrogen content in chickpea (Cicer arietinum L.). Agricultural Science and Technology, 11(2): 154-160. [DOI:10.15547/ast.2019.02.025]
55. Firuzeh, R., N.R.A. Khavarinejad, F. Najaf and S. Saadatmand. 2016. Effect of gibberellin on the activity of antioxidant enzymes in savory plant (Satureja hortensis L.) under salt stress. Journal of Plant Process and Function, 5 (16): 45-56.
56. Fischer, R.A. and R. Maurer. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29: 897-907. [DOI:10.1071/AR9780897]
57. Havaux, M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sciences, 3: 147-151. [DOI:10.1016/S1360-1385(98)01200-X]
58. Hoagland, D.R. and D.L. Arnon. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular. 347.
59. Ibrahim, M.H., H.Z.E. Jaafar, A. Rahmat and Z.A. Rahman. 2012. Involvement of nitrogen in flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip fatimah). International Journal of Molecular Sciences, 13: 393-408. [DOI:10.3390/ijms13010393]
60. Jabari, F., A. Ahmadi and K. Poustini. 2006. Relationships between anti-oxidant enzymes activates and chlorophyll content of different wheat cultivars. Journal of Agricultural Science, 37(1): 307-316.
61. Jomea-Bidokhti, A. 2013. The study of growth characteristics, yield and grain yield components of chickpea (Cicer arietinum L.) cultivars under the effect salinity. M.Sc. Thesis. University of Birjand Iran. (In Persian).
62. Kafi, M., A. Bagheri, J. Nabati, M. Zare Mehrjerdi and A. Masomi. 2011. Effect of salinity on some physiological variables of 11chickpea genotypes under hydroponic conditions. Science Technology Greenhouse Culture-Isfahan University Technology, 1: 55-70. (In Persian).
63. Katerji, N., J.W. van Hoorn, A. Hamdy and M. Mastrorilli. 2003. Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agriculture Water Management, 62: 37-66. [DOI:10.1016/S0378-3774(03)00005-2]
64. Kovac, D., B. Vesela, K. Klem, K. Vecerova, Z.M. Kmecova, J. Penuelas and O. Urban. 2020. Correction of PRI for carotenoid pigment pools improves photosynthesis estimation across different irradiance and temperature conditions. Remote Sensing of Environment, 244: 111834. [DOI:10.1016/j.rse.2020.111834]
65. Kumar, N. 2018. Physiological responses of chickpea (Cicer arietinum L.) cultivars under saline irrigation. PhD Thesis, Chaudhary Charan Singh Haryana Agricultural University.83 pp.
66. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444: 139-158. [DOI:10.1016/j.abb.2005.10.018]
67. Muchate, N.S., G.C. Nikalje, N.S. Rajurkar, P. Suprasanna and T.D. Nikam. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82(4): 371-406. [DOI:10.1007/s12229-016-9173-y]
68. Mudgal, V., N. Madaan, A. Mudgal and S. Mishra. 2009. Changes in growth and metabolic profile of chickpea under salt stress. Applied of Biosciences, 23: 1436-1446.
69. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3): 645-663. [DOI:10.1111/j.1469-8137.2005.01487.x]
70. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911]
71. Ozaktan, H., C.Y. Ciftci, M.D. Kaya, S. Uzun, O. Uzun and G. Akdogan. 2018. Chloride salts inhibit emergence and seedling growth of chickpea rather than germination. Legume Research-An International Journal, 41(1): 60-66.
72. Parvaiz, A. and S. Satyawati. 2008. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environmental, 54: 89-99. [DOI:10.17221/2774-PSE]
73. Premachandra, G.S., H. Saneoka, M. Kanaya and S. Ogata. 1991. Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. Journal of Experimental Botany, 42: 167-171. [DOI:10.1093/jxb/42.2.167]
74. Prochazkova, D., R. Sairam, G. Srivastava and D. Singh. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161: 765-771. [DOI:10.1016/S0168-9452(01)00462-9]
75. Roy, F., J. Boye and B. Simpson. 2010. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International, 43: 432-42. [DOI:10.1016/j.foodres.2009.09.002]
76. Sharma, H.C., C.P. Srivastava, C. Durairaj and C.L.L. Gowda. 2010. Pest management in grain legumes and climate change. In: Yadav, S.S., D.L. McNeil, R. Redden, and S.A. Patil, (eds), Climate change and management of cool season grain legume crops. 115-140 pp., Springer, Dordrecht. [DOI:10.1007/978-90-481-3709-1_7]
77. Shi, D. and Y. Sheng. 2004. Effect of various salts alkaline mixed stress conditions on sunflower seedling and analysis of their stress factors. Environmental and Experimental Botany, 54: 8-21. [DOI:10.1016/j.envexpbot.2004.05.003]
78. Silva, P. and H.Geros. 2009. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signaling and Behavior, 4: 718-726. [DOI:10.4161/psb.4.8.9236]
79. Singleton, V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16 (3): 144-158.
80. Tandon, H.L.S. 1995. Methods of analysis of soils, plants, water andfertilizers. FDCO, New Delhi.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb