دوره 14، شماره 44 - ( زمستان 1401 )                   جلد 14 شماره 44 صفحات 130-119 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifi Soltani S, Ranjbar G A, Kazemitabar S K, Pakdin Parizi A, Najafi Zarini H. (2022). Evaluation of Photosynthetic Pigment, Antioxidant and Non-Antioxidant Activity and some Morphological Traits Changes under Drought Stress in Castor Plant (Ricinus communis L.). jcb. 14(44), 119-130. doi:10.52547/jcb.14.44.119
URL: http://jcb.sanru.ac.ir/article-1-1334-fa.html
شریفی سلطانی سارا، رنجبر غلامعلی، کاظمی تبار سیدکمال، پاکدین پاریزی علی، نچفی زرینی حمید. بررسی تغییرات رنگیزه های فتوسنتزی، فعالیت آنتی اکسیدانی و غیر آنتی اکسیدانی و برخی صفات مورفولوژیکی تحت تنش خشکی در گیاه کرچک (.Ricinus communis L) پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (44) :130-119 10.52547/jcb.14.44.119

URL: http://jcb.sanru.ac.ir/article-1-1334-fa.html


پژوهشکده ژنتیک و زیست فناوری طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (1395 مشاهده)
چکیده مبسوط
مقدمه و هدف: تنش خشکی از مهم­ترین تنش ­های محیطی می­ باشد که بر­روی گیاهان تآثیر می­ گذارد.؛ بنابراین شناخت مکانیسم­ های که گیاه در مواجهه با تنش از خود نشان می ­دهد، ضروری می ­باشد.
مواد و روش­ ها: به­ منظور مطالعه تآثیر تنش خشکی بر صفات مورفولوژیکی و بیوشیمیایی گیاه کرچک، آزمایشی به­ صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه تحقیقاتی دانشگاه علوم کشاورزی ساری در سال 8-1397 به اجرا در­آمد. عامل اول شامل 22 اکوتیپ کرچک و عامل دوم اعمال تنش خشکی در 5 سطح، آبیاری کامل، قطع آبیاری در اوایل مرحله رشد سنبله به­ مدت (11، 22، 33 و 44 روز) انجام شد. در این پژوهش صفاتی شامل فعالیت آنزیم سوپراکسید دیسموتاز (SOD)، کلروفیل a، کلروفیل b، کلروفیل کل، کاروتنوئید، فنل، فلاونوئید و میزان پروتئین و همچنین صفات مورفولوژیک مانند ارتفاع گیاه و شاخص سطح برگ نیز اندازه­ گیری شد.
یافته­ ها: نتایج نشان داد که با افزایش شدت تنش فعالیت آنزیم سوپراکسید دیسموتاز (SOD)، میزان پروتئین، فنل و فلاونوئید به‌طور معنی­ داری افزایش می­یابد در حالیکه میزان رنگیزه­ های فتوسنتزی و کاروتنوئید و همچنین ارتفاع گیاه و شاخص سطح برگ کاهش معنی­ داری را با افزایش تنش از خود نشان دادند. با توجه به نتایج تجزیه خوشه­ ای در شرایط تنش خشکی اکوتیپ ­های کرچک به سه خوشه تقسیم شدند. اختلاف بین اکوتیپ ­هایی که در گروه مقاوم قرار گرفتند در مقایسه با اکوتیپ ­های حساس تحت تنش در صفات سوپراکسید دیسموتاز (SOD)، کلروفیل a، کلروفیل b، کلروفیل کل، کاروتنوئید، فنل، فلاونوئید، میزان پروتئین، ارتفاع بوته و شاخص سطح برگ به­ترتیب 83/41، 83/33، 85/57، 84/21، 82/08، 88/7، 86/44، 86/81، 78 و 80/9 درصد بود. با توجه به نتایج اکوتیپ­ های 2،3، 5، 8 و 19 را می ­توان به عنوان اکوتیپ­ های مقاوم جهت کارهای اصلاحی بعدی معرفی نمود.
نتیجه­ گیری: در مجموع به ­نظر می­رسد اکوتیپ­های مقاوم با­ توجه به ­شدت آسیب­دیدگی کمتر از نظر شاخص ­های رشدی و افزایش بیشتر در فعالیت آنزیم سوپراکسید دیسموتاز (SOD) و تجمع پروتئین، فنول و فلاونوئید میزان مقاومت بیشتری در برابر تنش خشکی از خود نشان دادند.

 
متن کامل [PDF 1693 kb]   (685 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات، بیومتری
دریافت: 1400/10/11 | ویرایش نهایی: 1401/11/12 | پذیرش: 1401/3/2 | انتشار: 1401/10/11

فهرست منابع
1. Abasi Sadr, S., S. Sharafi and A. Hassanzadeh Ghorttapeh. 2018. Effect of drought stress and seed priming on some vegetative and reproductive traits of castor bean (Ricinus Communis L.) var Esfahan. Journal of Crop Ecophysiology, 12(1): 75-88 (In Persian).
2. Akbari, V. and R. Jalili Marandi. 2014. Effect of Cycocel on Growth and Photosynthetic Pigments of Tow Olive Cultivars under Different Irrigation Intervals. Journal of Horticultural Science, 27(4): 460-469 (In Persian).
3. Amarowicz, R., S. Weidner, L.Wójtowicz, M. Karmac., A. Kosinska and A. Rybarczyk. 2010. Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Functional Plant Science and Biotechnology, 4: 90-96.
4. Arora, A., T.M. Byrem, M.G. Nair and G.M. Strasburg. 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Archives of Biochemistry and Biophysics, 373:102-109. [DOI:10.1006/abbi.1999.1525]
5. Baghizadeh, A., S. Mohammadinejad and M. Rahimi. 2019. Evaluation of Some Biochemical Characteristics of Some Red Bean Ecotypes under Drought Stress Conditions. Journal of Crop Breeding, 11(29): 55-64. [DOI:10.29252/jcb.11.29.55]
6. Baker, N.R. and E. Rosenqvist. 2004. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany. 55(403): 1607-1621. [DOI:10.1093/jxb/erh196]
7. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44(1): 276-287. [DOI:10.1016/0003-2697(71)90370-8]
8. Bettaieb, I., I. Hamrouni - Sellami, S. Bourgou, F. Limam, B. Marzouk. 2010. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiolgiae Plantarum. 33(4): 1103-1111. [DOI:10.1007/s11738-010-0638-z]
9. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
10. Chakraborty, U. and B. Pradhan, 2012. Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation, Brazilian Journal of Plant Physiology, 24(2): 117-130. [DOI:10.1590/S1677-04202012000200005]
11. Chang, C., M. Yang., H. Wen and J. Chern. 2002 Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food and Drug Analysis, 10: 178-182. [DOI:10.38212/2224-6614.2748]
12. El-Amier, Y., K. Elhindi, S. El-Hendawy, S. Al-Rashed and A. Abd-ElGawad. 2019. Antioxidant system and biomolecules alteration in Pisum sativum under heavy metal stress and possible alleviation by 5-aminolevulinic acid. Molecules, 24(22): 4194. [DOI:10.3390/molecules24224194]
13. Elavarthi, S. and B. Martin. 2010. Spectrophotometric assays for antioxidant enzymes in plants. Methods in Molecular Biology, 639: 273-281. [DOI:10.1007/978-1-60761-702-0_16]
14. Elferjani, R. and R. Soolanayakanahally. 2018. Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Frontiers in plant science, 9: 1224. [DOI:10.3389/fpls.2018.01224]
15. Farooq, M., A. Wahid, N.S.M.A. Kobayashi, D.B.S.M.A. Fujita and S.M.A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188. [DOI:10.1007/978-90-481-2666-8_12]
16. Gaafar, A.A., S.I. Ali, M.A. El-Shawadfy, Z.A. Salama, A. Sękara, C. Ulrichs, and M.T. Abdelhamid. 2020. Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9(5): 627. [DOI:10.3390/plants9050627]
17. Hadi, H. and A. Kalantar. 2015. Effects of mycorhizal symbiosis, application of super absorbant gel, glycine betain and sugar beet extract on physiological traits and seed yield of castor bean (Ricinus communis L.) in drought stress conditions. Iranian Journal of Crop Sciences, 17(3) (In Persian).
18. Hssanpour, L.K., J. Ahmadi, J. Daneshian and S. Hatami. 2015. Changes in chlorophyll, protein and antioxidant enzymes on durum wheat under drought stress. Journal of crop Breeding, 7(15): 76-87 (In Persian).
19. Jaleel, C.A., K. Riadh, R. Gopi, P. Manivannan, J. Ines, H.J. Al-Juburi and R. Panneerselvam. 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31(3): 427-436. [DOI:10.1007/s11738-009-0275-6]
20. Khademian, R., M. Ghorbani Nohooji and B. Asghari. 2019. Effect of jasmonic acid on physiological and phytochemical attributes and antioxidant enzymes activity in safflower (Carthamus tinctorius L.) under Water Deficient. Journal of Medicinal plants, 18(72): 122-134 (In Persian). [DOI:10.29252/jmp.4.72.122]
21. Khodabin, G., Z. Tahmasebi Sarvestani, A.H.S. Rad and S.A.M. ModarresSanavy. 2020. Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chemistry & biodiversity, 17(2): 1900399 e. [DOI:10.1002/cbdv.201900399]
22. Khosrowshahi, Z.T., S.Y. Slehi-Lisar, K. Ghassemi-Golezani and R. Motafakkerazad. 2018. Physiological Responses of safflower to exogenous putrescine under water deficit. Journal of Stress Physiology & Biochemistry, 14(3).
23. Koutroubas, S.D., D.K. Papakosta and A. Doitsinis. 1999. Adaptation and yielding ability of Castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. European Journal of Agronomy 11: 227-237. [DOI:10.1016/S1161-0301(99)00034-9]
24. Kumar, M. 2016. Impact of climate change on crop yield and role of model for achieving food security. Environmental Monitoring and Assessment, 188(8): 1-14. [DOI:10.1007/s10661-016-5472-3]
25. Kumar, P., V.N.N. Srivastava, U.S. Victor, D. Gangadhar Rao, A.V.M. Subba Rao. Y.S. Ramakrishna and B.V Ramana Rao. 1996. Radiation and water use efficiencies of rainfed castor beans (Ricinus communis L.) in relation to different weather. Agricultural and Forest Meteorology, 81: 241-253. [DOI:10.1016/0168-1923(95)02309-7]
26. Lichtenthaler, H.K. 1987. "Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown", Journal of Plant Physiology, 131(1-2): 101-110. [DOI:10.1016/S0176-1617(87)80271-7]
27. Meda, A., C.E. Lamien., M. Romito., J. Millogo and O.G. Nacoulma. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91(3): 571-577. [DOI:10.1016/j.foodchem.2004.10.006]
28. Monakhova, O.F. and I.I. Chernyadev. 2002. Protective role of kartolin-4 in wheat plants exposed to soil drought. Appl. Environ. Microbiol, 38: 373-380. [DOI:10.1023/A:1016243424428]
29. Munne-Bosch, S. and J. Penuelas. 2003. Photo and antioxidant protection during summer leaf senescence in Pistscia lentiscus L. grown under Mediterranean field conditionsAnn. Bot, 92: 385-391. [DOI:10.1093/aob/mcg152]
30. Nikneshan, P. and A. Tadayyon. 2016. Physiological responses of castor ecotypes (Ricinus communis L.) to drought stress. Journal of Plant Process and Function, 5(17): 121-132 (In Persian).
31. Nikneshan, P., A. Tadayyon, M. Rafiolhosseini and B. Bahraininejad. 2015. Response of different castor ecotypes to drought stress under Isfahan and Shahrekord climates. Journal of Crops Improvement, 17(4): 1015-1033 (In Persian).
32. Oliviera-Neto, C.F., A.K. Silva-Lobato, M.C. Goncalves-Vidigal, R.C.L. Costa R, B.G. Santos.Filho, G.A.R. Alves, W.J.M. Silva-Maia, F.J.R. Cruz, H.K.B. Neres and M.J. Santos Lopes. 2009. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Science and Technology, 7: 588-593.
33. Papazoglou, E.G., E. Alexopoulou, G.K. Papadopoulos and G. Economou-Antonaka. 2020. Tolerance to Drought and Water Stress Resistance Mechanism of Castor Bean. Agronomy, 10(10): 1580. [DOI:10.3390/agronomy10101580]
34. Patane, C., S.L. Cosentino, S.A. Corinzia, G. Testa, O. Sortino and D. Scordia. 2019. Photothermal zoning of castor (Ricinus communis L.) growing season in the semi-arid Mediterranean area. Industrial Crops and Products, 142: 111837. [DOI:10.1016/j.indcrop.2019.111837]
35. Perry, B.A. 1943. Chromosome number and phylogenetic relationships in the Euphorbiaceae. American Journal of Botany, 527-543. [DOI:10.1002/j.1537-2197.1943.tb14796.x]
36. Rahimizadeh, M., D. Habibi, H. Madani, G. Mohammadi, A. Mehraban and A. Sabet. 2007. The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. Helia, 30: 167-174. [DOI:10.2298/HEL0747167R]
37. Salihu, B.Z., O.A. Falusi, A.O. Adepoju, I.W. Arolu., O.Y. Daudu., D.R. Abejide and Ch.O .Oke. 2019. Assessment of Genetic Diversity of Promising Castor Been (Ricinus communis L.) Genotypes in Nigeria. Notula Scientia Biologicae, 11(3): 467-474. [DOI:10.15835/nsb11310346]
38. Severino, L. S. and D.L Auld. 2013. Seed yield and yield components of castor influenced by irrigation. Industrial Crops and Products 49: 52- 60. [DOI:10.1016/j.indcrop.2013.04.012]
39. Seyed Ahmadi, A., A. Bakhshandeh and M. Gharineh. 2015. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz. Iranian Journal of Field Crops Research, 13(1): 71-80 (In Persian).
40. Shao, H.B., L.Y. Chu, C.A. Jaleel, P. Manivannan, R. Panneerselvam and M.A. Shao. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plantsbiotechnologically and sustainably improving agriculture and the Eco environment in arid regions of the globe, Crit. Biotechnol, 29: 131-151. [DOI:10.1080/07388550902869792]
41. Sica, P., A. Galvao, F. Scariolo, C. Maucieri, C. Nicoletto, C. Pilon and D. Franklin. 2021. Effects of drought on yield and nutraceutical properties of beans (Phaseolus spp.) traditionally cultivated in Veneto, Italy. Horticulturae, 7(2): 17. [DOI:10.3390/horticulturae7020017]
42. Singh, A.S., S. Kumari, A.R. Modi, B.B. Gajera, S. Narayanan and N. Kumar. 2015. Role of conventional and biotechnological approaches in genetic improvement of castor (Ricinus communis L.). Industrial Crops and Products, 74: 55-62. [DOI:10.1016/j.indcrop.2015.05.001]
43. Sirousmehr, A., J. Bardel and S. Mohammadi. 2015. Changes of germination properties, photosynthetic pigments and anti-oxidant enzymes activity of safflower as affected by drought and salinity stresses. Journal of Crop Ecophysiology, 8(32(4)): 517-534 (In Persian).
44. Song, X., G. Zhou., L. Shi., I. Ahmad., X. Shi., G. Zhu and X. Jiao. 2021. Comparative effects of salinity and drought on seed germination, seedling growth, photosynthetic productivity,pigments content and antioxidant enzymes of castor bean (Ricinus communis). Crop and Pasture Science, 72(7): 541-550. [DOI:10.1071/CP20495]
45. Taiz, E. and L. Zeiger. 2002. Plant Physiology, Third edition. Jhon Wiely. New York.
46. Teotónio, C., M. Rodríguez., P. Roebeling and P. Fortes. 2020. Water competition through the 'water-energy'nexus: Assessing the economic impacts of climate change in a Mediterranean context. Energy Economics, 85: 104539. [DOI:10.1016/j.eneco.2019.104539]
47. Toupchi Khosrowshahi, Z., S.Y. Salehi-Lisar, K. Ghassemi-Golezani and R. Motafakkerazad. 2019. Effect of polyamines on antioxidative responses of safflower (Carthamus tinctorius) under drought stress. Journal of Plant Production Research, 26(2): 157-171.
48. Urban, M.O., J. Vasek, M. Klíma, J. Krtkov_a, K. Kosova, I.T. Pr_a_sil, P. Vítamvas. 2017. Proteomic and physiological approach reveals drought-induced changes in rapeseeds: water-saver and water-spender strategy. Journal of Proteomics, 152: 188-205. [DOI:10.1016/j.jprot.2016.11.004]
49. Wright, P.R., J.M. Morgan., R.S. Jessop and A. Cass. 1995. Comparative adaptation of canola (Brassica napus) and Indian mustard (B. juncea) to soil water deficits: yield and yield components. Field Crops Research, 42(1): 1-13. [DOI:10.1016/0378-4290(95)00013-G]
50. Xiao, X., X. Xu and F. Yang. 2008. Adaptive responses to progressive drought stress in two Populus cothayana populations. Silva Fennica, 42(5): 705-719. [DOI:10.14214/sf.224]
51. Yan, M. 2015. Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African Journal of Botany, 99: 88-92. [DOI:10.1016/j.sajb.2015.03.195]
52. Yeboah, A., J. Lu., T. Yang, Y. Shi, H. Amoanimaa-Dede, K.G.A. Boateng and X. Yin. 2020. Assessment of castor plant (Ricinus communis L.) tolerance to heavy metal stress-a review. Phyton, 89(3): 453. [DOI:10.32604/phyton.2020.09267]
53. Zafari, M., A. Ebadi, S. Jahanbakhsh and M. Sedghi. 2020. Safflower (Carthamus tinctorius) biochemical properties, yield, and oil content affected by 24-epibrassinosteroid and genotype under drought stress. Journal of agricultural and food chemistry, 68(22): 6040-6047. [DOI:10.1021/acs.jafc.9b06860]
54. Zhao, M., X. Zhao, Y. Wu and L. Zhang. 2007. Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. Plant Physiology 164: 737-745. [DOI:10.1016/j.jplph.2006.03.002]
55. Zhou, H., G. Zhou, Q. He, L. Zhou, Y. Ji and M. Zhou. 2020. Environmental explanation of maize specific leaf area under varying water stress regimes. Environmental and Experimental Botany, 171: 103932. [DOI:10.1016/j.envexpbot.2019.103932]
56. Zhu, J., D.J. Cai, J. Wang, Y. Cao, J. Wen, S. He and S. Zhang. 2021. Physiological and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions. Oil Crop Science, 6(2): 97-104. [DOI:10.1016/j.ocsci.2021.04.003]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb