دوره 14، شماره 41 - ( بهار 1401 )                   جلد 14 شماره 41 صفحات 41-29 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabbari M, Golparvar A R, Sorkhilalehloo B. (2022). Investigation of Diversity of Different Agronomic and Morphological Traits in Wild Wheat Relatives. jcb. 14(41), 29-41. doi:10.52547/jcb.14.41.29
URL: http://jcb.sanru.ac.ir/article-1-1293-fa.html
جباری مریم، گل پرور احمد رضا، سرخی لله لو بهزاد، شمس مجید. بررسی تنوع صفات مختلف زراعی و مورفولوژی در خویشاوندان وحشی گندم پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (41) :41-29 10.52547/jcb.14.41.29

URL: http://jcb.sanru.ac.ir/article-1-1293-fa.html


گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد اصفهان(خوراسگان)، اصفهان، ایران
چکیده:   (1622 مشاهده)
چکیده مبسوط
مقدمه و هدف:
خویشاوندان وحشی گندم یکی از مهم‌ترین ذخایر ژنتیکی برای استفاده در برنامه‌های اصلاحی گندم می‌باشند. بنابراین شناسایی خویشاوندان وحشی گندم و آگاهی از تنوع موجود در آن‌ها و همچنین حفاظت از این گونه‌ها به صورت انکارناپذیری در گسترش غنای خزانه ژنی و پایه ژنتیکی ارقام جدید مؤثر بوده و می‌تواند ابزار مناسبی برای اصلاحگران در آینده باشد.
مواد و روش‌ها: مطالعه حاضر به منظور ارزیابی تنوع ژنتیکی و بررسی روابط بین صفات در 49 ژنوتیپ از خویشاوندان وحشی گندم شامل 15 گونه در قالب طرح آگمنت در پنج بلوک در مزرعه بخش تحقیقات ژنتیک و بانک ژن گیاهی ملی ایران موسسه تحقیقات اصلاح و تهیه نهال و بذر در سال زراعی 99-1398 اجرا گردید.
یافته‌ها: بر اساس نتایج تجزیه واریانس بین گونه‌های مختلف خویشاوند وحشی گندم مورد مطالعه از لحاظ صفات ارتفاع، طول بیرون‌آمدگی پدانکل، طول پدانکل و طول و عرض دانه اختلاف معنی‌داری در سطح احتمال 0/01 وجود داشت. مقادیر ضرایب تنوع نیز بیانگر تنوع بالا بین گونه‌های مختلف خویشاوند وحشی از لحاظ صفات مورفولوژی به غیر از طول برگ پرچم بود. بیشترین میزان ضریب تغییرات ژنتیکی و بیشترین میزان وراثت‌پذیری، مربوط به صفت طول پدانکل بود. بر اساس نتایج برآورد ضرایب همبستگی بین صفات، رابطه مثبت و معنی‌داری بین عملکرد و اجزای عملکرد وجود داشت. براساس نتایج تجزیه رگرسیون پنج صفت وزن سنبله، شاخص برداشت، ارتفاع، طول دانه و تعداد دانه در سنبله به عنوان صفات مؤثر بر عملکرد دانه تعیین شدند که در بین این صفات وزن سنبله عمدتا به صورت مستقیم و تعداد دانه در سنبله به طور غیر مستقیم عملکرد دانه را تحت تأثیر قرار دادند. نتایج تجزیه عاملی نیز منجر به شناسایی سه عامل مؤثر بر عملکرد شد که در مجموع توانستند 84/39 درصد از واریانس بین داده‌ها را توجیه کنند. دندروگرام حاصل از تجزیه خوشه‌ای، ارقام و گونه‌های مورد بررسی را بر اساس کلیه صفات به سه گروه کلی تفکیک کرد. از  ژنوتیپ‌های قرار گرفته در گروه چهارم و پنجم به دلیل داشتن انحراف از میانگین کل مثبت برای صفات ارتفاع، طول برگ پرچم و طول دانه می‌توان برای کارهای اصلاحی و تولید ارقام جدید با بهبود عملکرد بیولوژیک و عملکرد دانه، بهره برد و از ژنوتیپ‌های گروه اول می‌توان برای اصلاح صفت شاخص برداشت استفاده کرد.
 نتیجه‌گیری: بین خویشاوندان وحشی گندم مورد مطالعه از لحاظ صفات مورفولوژی تنوع قابل توجهی مشاهده شد که از این تنوع می‌توان برای برنامه‌های اصلاح ذخایر ژنتیکی استفاده کرد.
متن کامل [PDF 1696 kb]   (486 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1400/6/2 | ویرایش نهایی: 1401/7/12 | پذیرش: 1400/10/19 | انتشار: 1401/1/10

فهرست منابع
1. Ahmadi, J., A. Pour-Aboughadareh, S. Fabriki-Ourang, A.A. Mehrabi and K.H.M. Siddique. 2018. Screening wild progenitors of wheat for salinity stress at early stages of plant growth: Insight into potential sources of variability for salinity adaptation in wheat. Crop and Pasture Science, 69: 649-658. [DOI:10.1071/CP17418]
2. Bhatta, M., A. Morgounov, V. Belamkar, J. Poland and P.S. Baenziger. 2018. Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genomics, 19: 591. Breeding Science, 61: 347-357. [DOI:10.1186/s12864-018-4969-2]
3. Chhuneja, P., S. Kaur, T. Garg, M. Ghai, S. Kaur, M. Prashar, N.S. Bains, R.K. Goel, B. Keller and H.S. Dhaliwal. 2008. Mapping of adult plant stripe rust resistance genes in diploid a genome wheat species and their transfer to bread wheat. Theoretical and Applied Genetics, 116: 313-324. [DOI:10.1007/s00122-007-0668-0]
4. Dante, F.P., T. Malachy, J.J. Campbell, X.C. Folsom, R. Greg, P. Kumar, B. Stephen and W. Harkamal 2013. Introgression of Novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiolgy, 161: 1806-1819. [DOI:10.1104/pp.113.214262]
5. Dayem, A.E.L., Y.A.E.L. Gohary and H.E. Ibrahim. 2021. Path-Coefficient Analysis and Correlation Studies on Grain Yield and its Components of some Bread Wheat Genotypes under Three Irrigation Treatments. Journal of Plant Production, 12(2): 115-123. [DOI:10.21608/jpp.2021.54735.1010]
6. De Ponti, O. 2010. Germplasm exploitation and ownership: Who owns what? 2nd International Symposium on Genomics of Plant Genetic Resources, Bologna, Italy, 30 pp.
7. Dempewolf, H., G. Baute, J. Anderson, B. Kilian, C. Smith and L. Guarino. 2017. Past and future use of wild relatives in crop breeding. Crop Science, 57: 1070-1082. [DOI:10.2135/cropsci2016.10.0885]
8. Djanaguiraman, M., P.V.V. Prasad, J. Kumari, S.K. Sehgal, B. Friebe, I. Djalovic, Y. Chen, K.H.M. Siddique and B.S. Gill. 2019. Alien chromosome segment from Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep root system. BMC Plant Biology, 19: 242. [DOI:10.1186/s12870-019-1833-8]
9. FAOSTAT, Food and Agricultural Commodities Production. [(accessed on 20 May 2021)]; Available online: http://faostat.fao.org/site/339/default.aspx.
10. Hairat, S. and P. Khurana. 2015. Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: Implications in wheat breeding programmes. Plant Physiology and Biochemistry, 95: 65-74. [DOI:10.1016/j.plaphy.2015.07.009]
11. Hamedi, M., M. Maleki, M. Rahimi, A. Baghizadeh and N.S. Alavi. 2017. Grouping of Different Populations of Wild Wheat (Triticum Boeoticum) by Multivariate Analysis. Journal of Crop Breeding, 9(21): 27-35 (In Persian). [DOI:10.29252/jcb.9.21.27]
12. Janmohammadi, M., N. Sabaghnia and M. Nouraein. 2014. Path analysis of grain yield and yieldcomponents and some agronomic traits in breadwheat. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62: 945-952. http://dx.doi.org/10.11118/actaun201462050945 [DOI:10.11118/actaun201462050945]
13. Kandel, M., A. Bastola, P. Sapkota, O. Chaudhary, P. Dhakal and P. Chalise. 2017. Association and path coefficient analysis of grain yield and its attributing traits in different genotypes of wheat (Triticum aestivum L.). International Journal of Applied Sciences and Biotechnology, 5(4): 449-453. [DOI:10.3126/ijasbt.v5i4.18769]
14. Kashif, M. and I. Khaliq. 2004. Heritability, correlation and path coefficient analysis for some metrictraits in wheat. International Journal of Agriculture and Biology, 1: 138-142.
15. Kiani, R., A. Arzani and F. Habibi. 2015. Physiology of salinity tolerance in Aegilops ylindrica. Acta Physiologiae Plantarum, 37: 135-145. [DOI:10.1007/s11738-015-1881-0]
16. Kishii, M. 2019. An update of recent use of Aegilops species in wheat breeding. Frontiers in Plant Science, 10: 585. [DOI:10.3389/fpls.2019.00585]
17. Kumar, A., A. Sharma, R. Sharma, P. Srivastva and A. Choudhary. 2021. Exploration of wheat wild relative diversity from Lahaul valley: a cold arid desert of Indian Himalayas. Cereal Research Communications, https://doi.org/10.1007/s42976-021-00166-w [DOI:10.1007/s42976-021-00166-w.]
18. Kumar, R., B. Bhushan, R. Pal and S.S. Gaurav. 2014. Correlation and path coefficient analysis forquantitative traits in wheat (Triticum aestivum L.) under normal condition, Annals of Agriculture Bio Research, 19:447-450.
19. Limin, A.E. and D.B. Fowler. 1981. Cold hardiness of some wild relatives of hexaploid wheat. Botany, 59: 572-573. [DOI:10.1139/b81-082]
20. Masoomi-Aladizgeh, F., A. Aalami, M. Esfahani, M.J. Aghaei and K. Mozaffari. 2015. Identification of CBF14 and NAC2 genes in Aegilops tauschii associated with resistance to freezing stress. Applied Biochemistry and Biotechnology, 176: 1059-1070. [DOI:10.1007/s12010-015-1629-8]
21. Maurya, A.K., R.K. Yadav, A.K. Singh, A. Deep and V. Yadav. 2020. Studies on correlation and path coefficients analysis in bread wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 9(4): 524-527.
22. Milner, S.G., M. Jost, S. Taketa, L.R. Mazon, A. Himmelbach, M. Oppermann, S. Weise, H. Knüpffer, M. Basterrechea, P. König, D. Schuler, R. Sharma, R.K. Pasam, T. Rutten, G. Guo, D. Xu, J. Zhang, G. Herren, T. Muller, S.G. Krattinger, B. Keller, Y. Jiang, M.Y. Gonzalez, Y. Zhao, A. Habeku, S. Färber, F. Ordon, M. Lange, A. Börner, A. Graner, J.C. Reif, U. Scholz, M. Mascher and N. Stein. 2019. Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 51: 319-326. [DOI:10.1038/s41588-018-0266-x]
23. Mishra, A., P. Kumar, M.D. Shamim, K.K. Tiwari, P. Fatima, D. Srivastava, R. Singh and P. Yadav. 2019. Genetic diversity and population structure analysis of Asian and African aromatic rice (Oryza sativa L.) genotypes. Journal of Genetics, 98: 92-111. [DOI:10.1007/s12041-019-1131-0]
24. Mondal, S., A. Sallam, D, Sehgal, A.K. Biswal, M. Farhad, N.J. Krishnan, U. Kumar, S. Sukumaran and Y. Nehela. 2021. Advances in breeding for abiotic stress tolerance in wheat. In book: Genomic Designing for Abiotic Stress Resistant Cereal CropsPublisher: Springer. [DOI:10.1007/978-3-030-75875-2_2]
25. Moradi Sarabsheli, A., M.R. Naghavi, M.J. Aghaei. 2011. The Study of Genetic Diversity in Wild Wheat Species by Morphological Traits. Plant Productions, 34(2): 41-55 (In Persian).
26. Müller, T., B. Schierscher-Viret, D. Fossati, C. Brabant, A. Schori, B. Keller and S.G. Krattinger. 2018. Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt. Theoretical and Applied Genetics, 131: 407-416. [DOI:10.1007/s00122-017-3010-5]
27. Naghdipour, A., M. Khodarahmi, A. Pourshahbazi and M. Esmaeilzade. 2011. Factor analysis for grain yield and other traits in durum wheat. Journal of Agronomy and Plant Breeding, 7: 84-96 (In Persian).
28. Nasri, R., F. Paknezhad, M. Sadeghi SHoa, S. Ghorbani and Z. Fatemi. 2012. Correlation and path analysis of drought stress on yield and yield components of barley (Hordeum vulgare) in Karaj region. Journal of Agronomy and Plant Breeding, 8(4): 155-165 (In Persian).
29. Noori, A., A.A. Mehrabi and H. Safari. 2017. Study of Correlation and Path Coefficient Analysis of Agronomic Traits and GrainYield for Aegilops cylindrica Accessions under Non-Stress and Drought StressConditions in Ilam. Journal of Crop Breeding, 9(23): 76-84 (In Persian). [DOI:10.29252/jcb.9.23.76]
30. Nowak, J.L., S. Okon and A. Wieremczuk. 2020. Molecular diversity analysis of genotypes from four Aegilops species based on retrotransposon-microsatellite amplifed polymorphism (REMAP) markers. Cereal Research Communications, 49(1): 37-44. [DOI:10.1007/s42976-020-00086-1]
31. Pandey, G., L. Yadav, A. Tiwari, H.B. Khatri, S. Basnet, K. Bhattarai and N. Khatri. 2017. Analysis of yield attributing characters of different genotypes of wheat in Rupandehi, Nepal. International Journal of Environment, Agriculture and Biotechnology, 2(5): 238915. [DOI:10.22161/ijeab/2.5.13]
32. Pour-Aboughadareh, A., J. Ahmadi, A.A. Mehrabi, M. Moghaddam and A. Etminan. 2017. Evaluation of agro-morphological diversity in wild relatives of wheat collected in IranJournal of Agricultural Science and Technology, 19: 943-956.
33. Pour-Aboughadareh, A., M. Omidi, M.R Naghavi, A. Etminan, A.A. Mehrabi and P. Poczai. 2020. Wild relative of wheat respond well to water deficit stress: a comparative study of antioxidant enzyme activities and their encoding gene expression. Agriculture, 10(9): 425. [DOI:10.3390/agriculture10090415]
34. Pour-Aboughadareh, A., M. Moghaddam, S.S. Alavikia and A.A. Mehrabi. 2016. Assessing heritability of agro-morphological characters and relationship between genetic diversity with geographical factors in Einkorn wild wheat populations collected from West and Northwest of Iran. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 24(2): 287-304.
35. Pour-Aboughadareh, A., J. Ahmadi, A.A. Mehrabi, A. Etminan, M. Moghaddam and K.H.M. Siddique, 2017. Physiological responses to drought stress in wild relatives of wheat: Implications for wheat improvement. Acta Physiologiae Plantarum, 39: 106. [DOI:10.1007/s11738-017-2403-z]
36. Pour-Aboughadareh, A., F. Kianersi, P. Poczai and H. Moradkhani. 2021. Potential of Wild Relatives of Wheat: Ideal Genetic Resources for Future Breeding Programs. Agronomy, 11(8): 1656. [DOI:10.3390/agronomy11081656]
37. Pour-Aboughadareh, A., M. Omidi, A. Etminan and A.A. Mehrabi. 2017. The importance of wild wheat germplasm in breeding for resistance to abiotic stresses. Modern Genetics Journal, 12(4): 489-504.
38. Pradheep, K., M. Singh, S.M. Sultan, K. Singh, R. Parimalan and S.P. Ahlawat. 2019. Diversity in wild relatives of wheat: an expedition collection from cold-arid Indian Himalayas. Genetic Resources and Crop Evolution, 66: 275-285. [DOI:10.1007/s10722-018-0706-6]
39. Rahmati, M., A. Ahmadi and T. Hosseinpour. 2018. Study of Genetic Variability, Heritability and Relationship between Grain Yield and Yield-Related Traits on Bread Wheat Genotypes under Dry Land Conditions. Journal of Crop Breeding, 10(25): 167-175 (In Persian). [DOI:10.29252/jcb.10.25.167]
40. Regmi, S., B. Poudel, B.R. Ojha, R. Kharel, P. Joshi, S. Khanal and B.P. Kandel. 2021. Estimation of Genetic Parameters of Different Wheat Genotype Traits in Chitwan, Nepal. International of Agronomy. Article ID 6651325, 10 pp. [DOI:10.1155/2021/6651325]
41. Reynolds, M.P., F. Dreccer and R. Trethowan. 2007. Drought adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany, 58: 177-186. [DOI:10.1093/jxb/erl250]
42. Riar, A.K., S. Kaur, H.S. Dhaliwal, K. Singh and P. Chhuneja. 2012. Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. Journal of Genetics, 91: 155-161. [DOI:10.1007/s12041-012-0161-7]
43. Sansaloni, C., J. Franco, B. Santos, L. Percival-Alwyn, S. Singh, C. Petroli, J. Campos, K. Dreher, T. Payne, D. Marshall, B. Kilian, I. Milne, S. Raubach, P. Shaw, G. Stephen, J. Carling, C. Saint Pierre, J. Burgueño, J. Crosa, H. Li, C. Guzman, Z. Kehel, A. Amri, A. Kilian, P. Wenzl, C. Uauy, M. Banziger, M. Caccamo and K. Pixley. 2020. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nature Communications, 11: 4572. [DOI:10.1038/s41467-020-18404-w]
44. Shahid, M., M. Fida and M. Tahir. 2002. Path coefficient analysis in wheat. Sarhad Journal of Agriculture, 18: 383-388.
45. Shirzad, H., J. Ahmadi, M.J. Aghaei and B. Sorkhi. 2020. Morphological Genetic Variation of Native Species of Aegilops triuncialis L. Collected from the northern half of Iran. Journal of Plant Researches, 34(3): 682-693 (In Persian).
46. Sohail, Q., T. Inoue, H. Tanaka, A.E. Eltayeb, Y. Matsuoka and H. Tsujimoto. 2011. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. [DOI:10.1270/jsbbs.61.347]
47. Topal, A., C. Aydin, N. Akgun and M. Babaoglu. 2004. Diallel crosses analysis in durum wheat (Triticum durum Desf.): identification of best parents for some kernel physical features. Field Crops Research, 87: 1-12. [DOI:10.1016/j.fcr.2003.08.015]
48. Upadhyay, K. 2020. Correlation and path coefficient analysis among yield and yield attributing traits of wheat (Triticum aestivum L.) genotypes. Archives of Agriculture and Environmental Science, 5(2): 196-199. [DOI:10.26832/24566632.2020.0502017]
49. Vikram, P., J. Franco, J. Burgueño, H. Li, D. Sehgal, C. Saint-Pierre, C. Ortiz, V.K. Singh, C. Sneller, A. Sharma, M. Tattaris, C. Guzman, J. Pena, C.P. Sansaloni, J.A.C. Serna, K. Thiyagarajan, G.F. Davila, M. Reynolds, K. Sonder, V. Govindan, M. Ellis, S. Bhavani, M.R. Jalal Kamali, M. Roosatei, S. Singh, D. Basandrai, N.S. Bains, A. Basandrai, T. Payne, J. Crossa and S. Singh. 2020. Strategic use of Iranian bread wheat landrace accessions for genetic improvement: Core set formulation and validation. Plant Breeding, 43(1): 87-99. [DOI:10.1111/pbr.12885]
50. Wang, S.C., D. Wong, K. Forrest, A. Allen, S.M. Chao, B.E. Huang, M. Maccaferri, S. Salvi, S.G. Milner, L. Cattivelli, A.M. Mastrangelo, A. Whan, S. Stephen, G. Barker, R. Wieseke, J. Plieske, International Wheat Genome Sequencing Consortium, Lillemo, M., D. Mather, R. Appels, R. Dolferus, G. Brown-Guedira, A. Korol, A.R. Akhunova, C. Feuillet, J. Salse, M. Morgante, C. Pozniak, M.C. Luo, J. Dvorak, M. Morell, J. Dubcovsky, M. Ganal, R. Tuberosa, C. Lawley, I. Mikoulitch, C. Cavanagh, K.J. Edwards, M. Hayden and E. Akhunov. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide Orphism array. Plant Biotechnology Journal, 12: 787-796. [DOI:10.1111/pbi.12183]
51. Weide, A., S. Rieh, M. Zeidi and N.J. Conard. 2013. Using new morphological criteria to identify domesticated emmer wheat at the aceramic Neolithic site of Chogha Golan (Iran). Journal of Archaeological Science, 57: 109-118. [DOI:10.1016/j.jas.2015.01.013]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb