دوره 14، شماره 41 - ( بهار 1401 )                   جلد 14 شماره 41 صفحات 193-184 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassanzadeh F, Asghari Zakaria R, Darvishzadeh R, Hosseinpour Azad N. (2022). Enhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L.. jcb. 14(41), 184-193. doi:10.52547/jcb.14.41.184
URL: http://jcb.sanru.ac.ir/article-1-1282-fa.html
حسن زاده فاطمه، اصغری زکریا رسول، درویش زاده رضا، حسین پور آزاد نورالدین. افزایش بیان ژن‌های درگیر در مسیر بیوسنتز تانشینون ها در گیاهان تتراپلوئید مریم‌گلی (Salvia officinalis L.) پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (41) :193-184 10.52547/jcb.14.41.184

URL: http://jcb.sanru.ac.ir/article-1-1282-fa.html


دانشگاه محقق اردبیلی
چکیده:   (1461 مشاهده)
چکیده مبسوط
مقدمه و هدف: پلی­پلوئیدی یکی از عوامل اصلی سازگاری در گیاهان است که می­تواند تولید متابولیت‌های ثانویه را در گیاهان افزایش دهد. مریم­گلی (Salvia officinalis L.) گیاهی چند ساله از خانواده Lamiaceae با سابقه طولانی استفاده در صنایع دارویی است و تانشینون­ها از ترکیبات فعال حیاتی هستند که در این گیاه تولید می ­شوند. این مطالعه با هدف تجزیه و تحلیل بیان ژن­های درگیر در مسیر بیوسنتز تانشینون­ها در گیاهان دیپلوئید و تتراپلوئید مریم­گلی و مقایسه بین آنها انجام شد.
مواد و روش­ ها: پلی­پلوئیدی در مریم­گلی از طریق تیمار بذور آن با کلشی‏سین 0/5 درصد به مدت 24 ساعت القاء شد و گیاهان تترا­پلوئید با استفاده از فلوسیتومتری، مشاهدات کروموزومی، خصوصیات مورفولوژیکی و تعداد روزنه انتخاب و تأیید شدند. استخراج RNA از برگ­ نمونه­های گیاهی دیپلوئید و تتراپلوئید مریم‏گلی، سنتز cDNA و سپس بررسی بیان ژن‌‌های درگیر در مسیر بیوسنتز تانشینون­ها شاملKSL ،IPPI ، CMK  و DXR با استفاده از روش واکنش زنجیره­ای پلیمراز در زمان واقعی (Real time PCR) انجام شد. به منظور بررسی بیان ژن‌‌‌‌های مورد نظر با روش RT-PCR در نمونه‌های برگی مریم­گلی، از ژن 18srRNA به عنوان ژن مرجع برای نرمال­سازی داده‌‌ها استفاده شد. برنامه حرارتی برای تکثیر ژن‌‌های مورد نظر توسط روش Real time PCR، شامل فعال‌‌سازی اولیه آنزیم، مرحله واسرشت‌‌سازی و اتصال آغازگرها بود. صحت تکثیر محصول مربوط به هر یک از ژ‌‌ن‌‌ها توسط منحنی ذوبی مربوط به هر ژن تأیید و درستی تکثیر توسط الکتروفورز ژل مورد بررسی قرار گرفت.
یافته­ ها: بررسی کیفیت RNAهای استخراج­شده با ژل آگارز یک درصد نشان­دهنده کیفیت نسبتاً خوب RNAهای استخراج­شده بود.  منحنی­های ذوب به دست آمده از واکنش PCR در زمان واقعی با استفاده از آغازگرهای مستقیم و معکوس برای ژن‏های هدف نشان داد که آغازگرها در دمای مشخص شده به درستی به جایگاه‏های هدف متصل شده و باعث تکثیر اختصاصی آنها می‏شوند. نتایج واکنش زنجیره­ای پلیمراز در زمان واقعی نشان داد که بیان ژن­های درگیر در مسیر بیوسنتز تانشینون­ها شاملKSL ،IPPI ،CMK  و DXR در گیاهان تتراپلوئید به طور قابل توجه و معنی‏داری در مقایسه با گیاهان دیپلوئید افزایش می­یابد.
نتیجه­ گیری: در گیاهان تتراپلوئید بیان ژن­های درگیر در بیوسنتز تانشینون‌ها افزایش یافت و این می‌تواند تولید این متابولیت­های ثانویه را  افزایش دهد. تجزیه و تحلیل بیان ژن در سری ‏های مختلف پلی­پلوئیدی می­تواند شناخت ما را از سازوکار مولکولی بیوسنتز متابولیت­های ثانویه و بهبود تولید آن­ها از طریق القای پلی‏پلوئیدی افزایش دهد.
متن کامل [PDF 1345 kb]   (559 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات مولكولي
دریافت: 1400/5/5 | ویرایش نهایی: 1401/3/1 | پذیرش: 1400/6/29 | انتشار: 1401/1/10

فهرست منابع
1. Akbari, R., L. Fahmideh and B. Fazeli-Nasab. 2021. Effect of colchicine on polyploidy induction and morphophysiological characteristics of Ajowan (Carum copticum L.) population of Sistan geographical area. Journal of Crop Breeding, 13(38): (In press) (In Persian).
2. Albertin, W., T. Balliau and P. Brabant. 2006. Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics, 173(2): 1101-1113. [DOI:10.1534/genetics.106.057554]
3. Albuzio, A., P. Spettoli and G. Cacco. 2006. Changes in gene expression from diploid to autotetraploid status of Lycopersicon esculentum. Physiologia Plantarum, 44: 77-80. [DOI:10.1111/j.1399-3054.1978.tb01617.x]
4. Ardabili S.G., R. Asghari Zakaria, N. Zare and L. Ghaffarzadeh Namazi. 2020. Effect of colchicine dose and treatment duration on morphophysiological characteristics of Bride Rose Poppy (Papaver Fugax Poir.) using different explants. Journal of Crop Breeding, 12(35): 69-79 (In Persian).
5. Ayora-Talavera, T., J. Chappell, E. Lozoya-Gloria and V.M. Loyola-Vargas. 2002. Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Applied Biochemistry and Biotechnology, 97(2): 135-145. [DOI:10.1385/ABAB:97:2:135]
6. Bahadori, F., A. Maddah and M. Amirjan. 2017. Cultivation and production of endemic clary saga (Salvia sclarea L.) in different agro ecosystems: potentials and opportunities. Scientific letter, 52-58 (In Persian).
7. Baubec, T., H.Q. Dinh, A. Pecinka, B. Rakic, W. Rozhon, B. Wohlrab, A. von Haeseler and O.M. Scheid. 2010. Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis. Plant Cell, 22: 34-47. [DOI:10.1105/tpc.109.072819]
8. Chang, Y., M. Wang, J. Li and S. Lu. 2019. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Scientific reports, 9(1): 1-12. [DOI:10.1038/s41598-019-51535-9]
9. Clasen-Bockhoff, R. 2004. The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation. Organisms Diversity and Evolution, 4(3): 189-205. [DOI:10.1016/j.ode.2004.01.004]
10. Classen-Bockhoff, R., M. Crone and E. Baikova. 2004. Stamen development in Salvia L.: Homology reinvestigated. International Journal of Plant Sciences, 165(4): 475-498. [DOI:10.1086/386565]
11. Comai, L. 2005. The advantages and disavantages of being polyploidy. Nature Reviews Genetics, 6: 836-846. [DOI:10.1038/nrg1711]
12. Eng, W.H. and W.S. Ho. 2019. Polyploidization using colchicine in horticultural plants: A review. Scientia Horticulturae, 246: 604-617. [DOI:10.1016/j.scienta.2018.11.010]
13. Galitski, T., A.J. Saldanha, C.A. Styles, E.S. Lander and G.R. Fink. 1999. Ploidy regulation of gene expression. Science, 285: 251-254. [DOI:10.1126/science.285.5425.251]
14. Ghahraman, A. 1983. Flora of Iran. Research Institue of Forests and Ranglands Publication, 4, NO. 475.
15. Hamidpour, R., S. Hamidpour and M. Shahlari. 2014. Chemistry pharmacology, and medicinal property of Sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease and cancer. Journal of Traditional and Complementary Medicine, 4l: 82-88. [DOI:10.4103/2225-4110.130373]
16. Hassanzadeh, F., R. Asghari Zakaria and N. Hosseinpour Azad. 2020. Polyploidy induction in Salvia officinalis L. and its effects on some morphological and physiological characteristics. Cytologia, 85: 157-162. [DOI:10.1508/cytologia.85.157]
17. Lavania, U.C. 2005. Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genetic Resources, 3(2): 170-177. [DOI:10.1079/PGR200576]
18. Levin, D.A. 2002. The role of chromosomal change in plant evolution. New York: Oxford University Press, 240 pp.
19. Massumi, M., M. Fazeli, S. Alavi and Y. Ajani. 2007. Chemical constituents and antibacterial activity of essential oil of Prangos ferulacea (L.) Lindl. Fruits, Iranian Journal of Pharmaceutical Sciences, 3(3): 171-6.
20. Mishra. B.K., S. Pathak, A. Sharma, P.K. Trivedi and S. Shukla. 2010. Modulated gene expression in newly synthesized autotetraploid of Papaver somniferum L. South African Journal of Botany, 76: 447-452. [DOI:10.1016/j.sajb.2010.02.090]
21. Osborn, T.C., J. Chris Pires, J.A. Birchler, D.L. Auger, Z.J. Chen, H.S. Lee, L. Comai, A. Madlung, R.W. Doerge, V. Colot and R.A. Martienssen. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 19(3): 141-147. [DOI:10.1016/S0168-9525(03)00015-5]
22. Pan, Q.Y., U. Chen and Q. Wang. 2010. Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regulation, 60(2): 133-141. [DOI:10.1007/s10725-009-9429-1]
23. Peebles, C.A.M., E.H. Hughes, J.V. Shanks and K.A.Y. San. 2009. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metabolic Engineering, 11(2): 76-86. [DOI:10.1016/j.ymben.2008.09.002]
24. Ramos-valdivia, A.C., R. Heijden and R. Verpoorte. 1997. Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Natural Product Reports, 14(6): 591-603. [DOI:10.1039/np9971400591]
25. Ramsay, H., L.H. Rieseberg and K. Ritland. 2009. The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis. Molecular Biology and Evolution, 26: 1045-1053. [DOI:10.1093/molbev/msp021]
26. Riddle, N.C., H. Jiang, L. An, R.W. Doerge and J.A. Birchle. 2010. Gene expression analysis at the intersection of ploidy and hybridity in maize. Theoretical and Applied Genetics, 120(2): 341-353. [DOI:10.1007/s00122-009-1113-3]
27. Safowora, E.A. 2008. Medicinal plant and traditional medicine in Africa. John Wiley and sons Ltd, 256 pp.
28. Samsam Sharia, H. 1995. Cultivation and propagation of medicinal plants. Mani Publications.
29. Shi, M., X.Q. Luo, G.H. Ju, X.H. Yu, X.L. Hao, Q. Huang, J.B. Xiao, L.J. Cui and G.Y. Kai. 2014. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Funct. Integr. Genomics, 14: 603-615. [DOI:10.1007/s10142-014-0385-0]
30. Tang, W. and G. Eisenbrand. 1992. Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag.
31. Tavan, M., H. Sarikhani, M.H. Mirjalili, M.M. Rigano and A. Azizi. 2021. Triterpenic and phenolic acids production changed in Salvia officinalis via in vitro and in vivo polyploidization: A consequence of altered genes expression. Phytochemistry 189, 112803. [DOI:10.1016/j.phytochem.2021.112803]
32. Thomas, P.D.R. and N.J. Montvale. 2004. Physicians' desk reference (PDR) for herbal medicines. Clove‐Syzygium aromaticum. Edn, 3: 204-208.
33. Wang, C.T., H. Liu, X.S. Gao and H.X. Zhang. 2010. Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Reports, 29(8): 887-894. [DOI:10.1007/s00299-010-0874-0]
34. Wendel, J.F. 2002. Genome evolution in polyploids. Plant Molecular Biology, 42(1): 225-249. [DOI:10.1023/A:1006392424384]
35. Wu, S.J., M. Shi and J.Y. Wu. 2009. Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots. Biotechnology and Applied Biochemistry, 52: 89-95. [DOI:10.1042/BA20080004]
36. Xing, S.H., X.B. Guo, Q. Wang, Q.F. Pan, Y.S. Tian, P. Liu, J.Y. Zhao, G.F. Wang, X.F. Sun and K.X. Tang. 2011. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. Journal of Biomedicine and Biotechnology, 2011: 1-10. [DOI:10.1155/2011/793198]
37. Xu, X., Q. Jiang, X. Ma, Q. Ying, B. Shen, Y. Qian, H. Song and H. Wang. 2014. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS ONE 9(11): e111679. journal.pone.0111679. [DOI:10.1371/journal.pone.0111679]
38. Yan, X., L. Zhang, L. Wang, P. Liao, Y. Zhang, R. Zhang and G. Kai. 2009. Molecular characterization and expression of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia Miltiorrhiza. Acta Physiologiae Plantarum, 31: 1015-1022. [DOI:10.1007/s11738-009-0320-5]
39. Yang, J., M.A. Adhikari, H. Liu, H. Xu, G. He, R. Zhan, J. Wei and W. Chen. 2012. Characterization and functional analysis of the genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour. Molecular Biology Reports, 39: 8287-8296. [DOI:10.1007/s11033-012-1676-y]
40. Yun, D.J. 1992. Metabolic engineering of medicinal plants transgenic Atropa belladonna with an improved alkaloid composition. Proceedings of the National Academy of Sciences of the United States of America, 89: 11799-11803. [DOI:10.1073/pnas.89.24.11799]
41. Zhang, X.Y., C.G. Hu and J.L. Yao. 2010. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. Journal of Plant Physiology, 167(2): 88-94. [DOI:10.1016/j.jplph.2009.07.006]
42. Zhou, W., Q. Huang, X. Wu, Z. Zhou, M. Ding, M. Shi, F. Huang, Sh. Li, Y. Wang and G. Kai. 2017. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Scientific Reports, 7(1): 1-12. [DOI:10.1038/s41598-017-10215-2]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb