دوره 13، شماره 38 - ( تابستان 1400 )                   جلد 13 شماره 38 صفحات 192-179 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barati A, Zali H, Lakzadeh I, Koohkan S, Jafarby J, Jabari M, et al . (2021). Path Analysis of Genotype× Environment Interaction and Evaluation of Grain Yield Stability of Barley Promising Lines in Warm Zones. J Crop Breed. 13(38), 179-192. doi:10.52547/jcb.13.38.179
URL: http://jcb.sanru.ac.ir/article-1-1244-fa.html
براتی علی، زالی حسن، لک زاده ایرج، کوهکن شیرعلی، جعفربای جبار، جباری مهدی، و همکاران. و همکاران.. تجزیه مسیر اثر متقابل ژنوتیپ× محیط و بررسی پایداری عملکرد لاین های امیدبخش جو در اقلیم گرم پژوهشنامه اصلاح گیاهان زراعی 1400; 13 (38) :192-179 10.52547/jcb.13.38.179

URL: http://jcb.sanru.ac.ir/article-1-1244-fa.html


بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران
چکیده:   (2139 مشاهده)
ارزیابی ژنوتیپ­ها در چندین محیط پیش­شرط توسعه ژنوتیپ­های پایدار و برتر برای تولید پایدار جو در شرایط مختلف محیطی است. به ­منظور بررسی پایداری عملکرد و تعیین سهم صفات مختلف مورفو-فنولوژیک در اثر متقابل ژنوتیپ× محیط در لاین­های جو، 17 لاین امیدبخش جو همراه با سه شاهد شامل ارقام نیمروز/صحرا و اکسین و لاین WB-94-3 در طی دو سال زارعی 98 -1396 در پنج ایستگاه منطقه گرم کشور شامل ایستگاه­های اهواز، داراب، زابل، گنبد و مغان در قالب طرح بلوک­های کامل تصادفی با سه تکرار مورد بررسی قرار گرفتند. تجزیه پایداری با استفاده از روش­های مختلف ناپارامتری انجام شد و نتایج آماره‌های ناپارامتری با استفاده از شاخص انتخاب ژنوتیپ ایده­آل (SIIG) ادغام شدند. داده ­های مورفو-فنولوژیک با استفاده از مدل تجزیه مسیر که از یک اثر اصلی و چهار اثر ضربی تشکیل شده است، مورد تجزیه و تحلیل قرار گرفت. زمان گل­دهی(X1) ، زمان رسیدگی(X2) ، ارتفاع بوته (X3) و وزن هزار دانه (X4) به ­عنوان صفات متوالی برای توجیه عملکرد دانه (Y) در نظر گرفته شدند. نتایج تجزیه واریانس عملکرد دانه با استفاده از روش­های پارامتری و ناپارامتری نشان داد که اثر ژنوتیپ، محیط و اثر متقابل ژنوتیپ× محیط در سطح احتمال یک درصد معنی­ دار است. براساس بیشتر روش­های ناپارامتری (شاخص SIIG) ژنوتیپ­های شماره­ی G10، G18، G19، G16 و G15 جزء ژنوتیپ­های پایدار با عملکرد دانه بالاتر از متوسط کل بودند. همبستگی مثبت شاخص SIIG با اجزاء ژنوتیپی تعداد روز تا گل­دهی (V1) و وزن هزار دانه (V4) نشان داد که وزن هزار دانه و تعداد روز تا گل­دهی نقش اصلی را در اثر متقابل ژنوتیپ× محیط جو در مناطق گرم دارند.
متن کامل [PDF 1265 kb]   (780 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: اصلاح نباتات، بیومتری
دریافت: 1400/1/28 | ویرایش نهایی: 1400/5/7 | پذیرش: 1400/2/29 | انتشار: 1400/5/7

فهرست منابع
1. Abdipour, M., B. Vaezi, M. Younessi-Hamzekhanlu, S.H. R.Ramazani. 2017. Nonparametric phenotypic stability analysis in advanced barley (Hordeum vulgare L.) genotypes. Journal of Crop Science and Biotechnology, 20(4): 305-314. [DOI:10.1007/s12892-017-0050-0]
2. Akbarpour, O.A., H. Dehghani, B. Sorkheh Lalelu and M.S. Kang. 2016. A SAS macro for computing statistical tests for two-way table and stability indices of nonparametric method from genotype-by-environment interaction. Acta Scientiarum Agronomy, 38(1): 35-50. [DOI:10.4025/actasciagron.v38i1.26381]
3. Askarinia, P., G. Saeidi and A. Rezai. 2008. Assessment genotype × environment interaction in ten wheat cultivars with regression and path coefficient analysis. Iranian Society of Agronomy and Plant Breeding, 1(1): 64-81 (In Persian).
4. Bredenkamp, J. 1974. Nonparametrische prüfung von wechselwirkungen. Psychologische Beiträge, 16: 398-416.
5. De Kroon, J.P.M. and P. Van der Laan. 1981. Distribution-free test procedures in two-way layouts: a concept of crossover-interaction. Statistica Neerlandica, 35: 189-213. [DOI:10.1111/j.1467-9574.1981.tb00730.x]
6. Ebadi Segherloo, A., S.H. Sabaghpour, H. Dehghani and M. Kamrani. 2008. Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica, 162: 221-229. [DOI:10.1007/s10681-007-9552-x]
7. Ehdaei, B., M.R. Shakiba and J.G. Waines. 1999. Path analysis of genotype x environment interactions of wheats to nitrogen. Agronomie, 19: 45-56. [DOI:10.1051/agro:19990105]
8. Esmaeilzadeh Moghaddam, M., S. Tahmasebi, G.A.L.A. Ayeneh, H. Akbari Moghadam, K. Mahmoudi, M. Sayyahfar, S.M. Tabib Ghaffari and H. Zali. 2018. Yield stability evaluation of bread wheat promising lines using multivariate methods. Cereal Research, 8(3): 333-344 (In Persian).
9. FAO. 2019. Statistical data. WWW. Fao. org/faostat.
10. Farshadfar, E., V. Rasoli, R. Mohhamadi and Z. Veusi. 2012. Path analysis of phenotypeic stability and drought tolerance in bread wheat (Triticum aestivum L.). International Journal of Plant Breeding, 6(2): 106-112.
11. Farshadfar, E. 2013. Path analysis of genotype × environment interaction in wheat-barley disomic addition lines. Acta Agronomica Hungarica, 61(4): 255-266. [DOI:10.1556/AAgr.61.2013.4.2]
12. Farshadfar, E., S.H. Sabaghpour and H. Zali. 2012. Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Australian Journal of Crop Science, 6(3): 514-524.
13. Farshadfar, E., E. Mahtabi and M.M. Jowkar. 2017. Evaluation of genotype × environment interaction in chickpea genotypes using path analysis. International Journal of Advanced Biological and Biomedical Research, 5(4): 168-173.
14. Ferreira, J.R., J.F. Pereira, C. Turchetto, E. Minella, L. Consoli and C.A. Delatorre. 2016. Assessment of genetic diversity in Brazilian barley using SSR markers. Genetics and Molecular Biology, 39(1): 86-96. [DOI:10.1590/1678-4685-GMB-2015-0148]
15. Grafius, J.E. and R.L. Thomas. 1971. The case for indirect genetic control of sequential traits and the strategy of deployment of environmental resources by the palm. Heredity, 27: 433-442. [DOI:10.1038/hdy.1971.54]
16. Hildebrand, H. 1980. Asymptotisch verteilungsfreie Rangtests in linearen Modellen. Medizinische Informatik und Statistik, 17: 344-349. [DOI:10.1007/978-3-642-81405-1_34]
17. Huehn, V. M. 1990. Non-parametric measures of phenotypic stability. Part I: Theory. Euphytica, 47: 189-194. [DOI:10.1007/BF00024241]
18. Jamshidimoghaddam, M. and S.S. Pourdad. 2013. Evaluation of seed yield adaptability of spring safflower genotypes using nonparametric parameters and GGE biplot method in rain-fed conditions. Seed and Plant Improvement Journal, 19(1): 45-63 (In Persian).
19. Khalili, M. and A. Pour-Aboughadareh. 2016. Parametric and non-parametric measures for evaluating yield stability and adaptability in barley doubled haploid lines. Journal of Agricultural and Science Technology, 18: 789-803.
20. Karimizadeh, R., M. Safikhani, M. Mohammadi, F. Seyyedi, A. Mahmoodi and B. Rostami. 2008. Determining rank and stability of lentil in rainfed condition by nonparametric statistics. Journal of Science and Technology of Agriculture and Natural Resources, 43(1): 93-103 (In Persian).
21. Kaya, Y. and S. Taner. 2003. Estimating genotypic ranks by nonparametric stability analysis in bread wheat (Triticum aestivum L.). Journal of Central European Agriculture, 4(1): 47-53.
22. Lynch, D.R. and G.C.C. Tai. 1989. Yield and yield component response of eight potato genotypes to water stress. Crop Science, 29: 1207-1207. [DOI:10.2135/cropsci1989.0011183X002900050024x]
23. Moghaddam, M.J. and S.S. Pourdad. 2009. Comparison of parametric and nonparametric methods for analysing genotype× environment interactions in safflower (Carthamus tinctorius L.). Journal of Agricultural Science, Cambridge, 147: 601-612. [DOI:10.1017/S0021859609990050]
24. Mohammadi, R., A. Abdulahi, R. Haghparast and M. Armion. 2007. Interpreting genotype× environment interactions for durum wheat grain yields using nonparametric methods. Euphytica, 157: 239-251. [DOI:10.1007/s10681-007-9417-3]
25. Mohammadi, R. and A. Amri. 2008. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3): 419-432. [DOI:10.1007/s10681-007-9600-6]
26. Mohammadi, R., E. Farshadfar and A. Amri. 2016. Path analysis of genotype× environment interactions in rainfed durum wheat, Plant Production Science, 19(1): 43-50. [DOI:10.1080/1343943X.2015.1128100]
27. Mahtabi, E., E. Farshadfar and M.M. Jowkar. 2014. Stability analysis of yield components in chickpea genotypes. Agricultural Communications, 2(4): 1-8.
28. Najafi Mirak, T., M. Dastfal, B. Andarzian, H. Farzadi, M. Bahari and H. Zali. 2018. Assessment of non-parametric methods in selection of stable genotypes of durum wheat (Triticum turgidum L. var. durum). Iranian Journal of Crop Sciences, 19(2): 126-138 (In Persian).
29. Nassar, R. and M. Huehn. 1987. Studies on estimation of phenotypic stability: Tests of significance for non-parametric measures of phenotypic stability. Biometrics, 43: 45-53. [DOI:10.2307/2531947]
30. Pour-Aboughadareh, A., M. Yousefian, H. Moradkhani, P. Poczai, and K. H. M. Siddique. 2019. STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1): 1-6. [DOI:10.1002/aps3.1211]
31. Oraki, A., M.R. Siahpoosh, A. Rahnama and I. Lakzadeh. 2016. The effects of terminal heat stress on yield, yield components and some morpho-phenological traits of barley genotypes (Hordeum vulgare L.) in Ahvaz weather conditions. Iranian Journal of Filed Crop Science, 47(1): 29-41 (In Persian).
32. Sabaghnia, N., H. Dehghani and S.H. Sabaghpour. 2006. Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science, 46: 1100-1106. [DOI:10.2135/cropsci2005.06-0122]
33. Soughi, H.A., N.A. Babaeian Jelodar, G.A. Ranjbar and M. Hadi Pahlevani. 2016. Simultaneous selection based on yield and yield stability in bread wheat genotypes. Journal of Crop Breeding, 8(18): 119-125 (In Persian). [DOI:10.29252/jcb.8.18.119]
34. Tai, G.C.C. 1979. Analysis of genotype-environment interaction of potato yield. Crop Science, 19: 434-438. [DOI:10.2135/cropsci1979.0011183X001900040003x]
35. Tai, G.C.C., D. Levy and W.K. Coleman. 1994. Path analysis of genotype-environment interactions of potatoes exposed to increasing warm-climate constraints. Euphytica, 75: 49-61. [DOI:10.1007/BF00024531]
36. Temesgen, T., G. Keneni, T. Sefera and M. Jarso. 2015. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. The Crop Journal, 3: 258-268. [DOI:10.1016/j.cj.2015.03.004]
37. Thennarasu, K. 1995. On certain non-parametric procedures for studying genotype-environment interactions and yield stability. Ph.D. Thesis. P. J. School, IARI, New Delhi.
38. Thomas, R.C., J.E. Grafius and S.K. Hahn. 1971. Stress: An analysis of its source and influence. Heredity, 27: 423-432. [DOI:10.1038/hdy.1971.53]
39. Vaezi, B., A. Pour-Aboughadareh, A. Mehraban, T. Hossein-Pour, R. Mohammadi, M. Armion and M. Dorri. 2017. The use of parametric and non-parametric measures for selecting stable and adapted barley lines. Archives of Agronomy and Soil Science, 64(5): 597-611. [DOI:10.1080/03650340.2017.1369529]
40. Zali, H., O. Sofalian, T. Hasanloo, A. Asgharii and S.M. Hoseini. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum - An International Journal, 7(2): 703-711.
41. Zali, H., T. Hasanloo, O. Sofalian, A. Asghari and M. Zeinalabedini. 2016. Appropriate strategies for selection of drought tolerant genotypes in canola. Journal of Crop Breeding, 8(20): 77-90 (In Persian). [DOI:10.29252/jcb.8.18.191]
42. Zali, H. and A. Barati. 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding, 12(34): 93-104 (In Persian). [DOI:10.29252/jcb.12.34.93]
43. Zarei, L., E. Farshadfar, R. Haghparast, R. Rajabi, M. Mohammadi Sarab Badieh and H. Zali. 2012. Comparison of different methods of stability evaluation in bread wheat genotypes under drought stress conditions. Electronic Journal of Crop Breeding, 5(3): 81-97 (In Persian).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb