دوره 12، شماره 36 - ( زمستان 1399 1399 )                   جلد 12 شماره 36 صفحات 179-171 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wehbi E, Abdollahi Mandoulakani B. (2020). Expression Pattern of NAS1, NAS2 and NAS3 Genes under Zn Deficiency Conditions in Bread Wheat (Triticum aestivum L.). jcb. 12(36), 171-179. doi:10.52547/jcb.12.36.171
URL: http://jcb.sanru.ac.ir/article-1-1161-fa.html
وهبی اسماعیل، عبدالهی مندولکانی بابک. الگوی بیان ژن های NAS1، NAS2 و NAS3 تحت تنش کمبود روی در گندم نان (Triticum aestivum L.) پژوهشنامه اصلاح گیاهان زراعی 1399; 12 (36) :179-171 10.52547/jcb.12.36.171

URL: http://jcb.sanru.ac.ir/article-1-1161-fa.html


گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ارومیه
چکیده:   (2176 مشاهده)
   به ­منظور مطالعه اثر تنش کمبود روی (Zn) بر بیان سه ژن دخیل در سنتز کلاته­ کننده­ های فلزات (NAS1، NAS2 و NAS3)در گندم نان،آزمایش گلخانه­ ای به ­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. دو رقم هامون و هیرمند (به ­ترتیب روی-کارا و روی-ناکارا)در شرایط تنش کمبود روی (صفر) و کفایت آن (5 میلی­ گرم روی در کیلوگرم خاک) کشت و بیان نسبی این ژن‏ها در ریشه و برگ در دو مرحله رشدی، طویل شدن ساقه (مرحله رویشی) و 30 درصد گلدهی (مرحله زایشی) با روش Real time PCR ارزیابی شد. نتایج نشان داد که بیشترین میزان افزایش بیان نسبی ژن­های NAS1 (7 برابر کنترل) و NAS2 (5 برابر) در شرایط تنش کمبود روی به­ ترتیب در ریشه رقم روی-کارای هامون در مرحله زایشی و در برگ همین رقم در مرحله رویشی مشاهده شد. بیشترین میزان افزایش بیان ژن NAS3 (7 برابر کنترل) نیز در شرایط کمبود روی در ریشه رقم روی-کارای هامون در مرحله زایشی مشاهده شد. در برگ نیز بیان این ژن در مرحله زایشی در شرایط کمبود روی در هر دو رقم افزایش یافت. نتایج حاصل از این تحقیق نشان می­ دهد که در شرایط کمبود روی میزان بیان ژن­های NAS1 ، NAS2 و NAS3 در ریشه و برگ رقم روی-کارا بیشتر از رقم روی-ناکارا گندم نان افزایش می­  یابد که این امر احتمالاً از طریق افزایش سنتز کلاته­ کننده ­های روی مانند نیکوتین آمین و موجینئیک اسید در ریشه و برگ ارقام روی-کارا، جذب و انتقال روی را تسهیل خواهد بخشید.
متن کامل [PDF 400 kb]   (732 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1399/5/26 | ویرایش نهایی: 1399/11/19 | پذیرش: 1399/9/18 | انتشار: 1399/11/17

فهرست منابع
1. Alloway, B.J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health, 31(5): 537-548. [DOI:10.1007/s10653-009-9255-4]
2. Arnold, T., G.J. Kirk, M. Wissuwa, M. Frei, F.J. Zhao, T.F. Mason and D.J. Weiss. 2010. Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant, cell & environment, 33(3): 370-381. [DOI:10.1111/j.1365-3040.2009.02085.x]
3. Baghban-Tabiat, S. and M.H. Rasouli-Sadaghiani. 2012. Investigation of Zn utilization and acquisition efficiency in different wheat genotypes at greenhouse conditions. Journal of Science and Technology of Greenhouse Culture, 3(2): 17-32 (In Persian).
4. Bashir, K., Y. Ishimaru and N.K. Nishizawa. 2012. Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361(1): 189-201. [DOI:10.1007/s11104-012-1240-5]
5. Bouain, N., Z. Shahzad, A. Rouached, G.A. Khan, P. Berthomieu, C. Abdelly and H. Rouached. 2014. Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 65(20): 5725-5741. [DOI:10.1093/jxb/eru314]
6. Brenchley, R., M. Spannagl, M. Pfeifer, G.L.A. Barker, R. D'Amore, A.M. Allen, N. McKenzie, M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, I. Bancroft, Y. Gu, N. Huo, M.C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. Kersey, J. Dvorak, W.R. McCombie, A. Hall, K.F.X. Mayer, K.J. Edwards, M.W. Bevan and N. Hall. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491(7426): 705-710. [DOI:10.1038/nature11650]
7. Bushuk, W. and V.F. Rasper. 1994. Wheat: Production, Properties and Quality (V. F. R. W. Bushuk Ed.): Springer Science& Business Media. [DOI:10.1007/978-1-4615-2672-8]
8. Cakmak, I. 2000. Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2): 185-205. [DOI:10.1046/j.1469-8137.2000.00630.x]
9. Cakmak, I., A. Yilmaz, M. Kalayci, H. Ekiz, B. Torun and H.J. Braun. 1996. Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil, 180(2): 165-172. [DOI:10.1007/BF00015299]
10. Callahan, D.L., A.J. M. Baker, S.D. Kolev and A.G. Wedd. 2006. Metal ion ligands in hyperaccumulating plants. JBIC Journal of Biological Inorganic Chemistry, 11(1): 2-12. [DOI:10.1007/s00775-005-0056-7]
11. Clemens, S., U. Deinlein, H. Ahmadi, S. Höreth and S. Uraguchi. 2013. Nicotianamine is a major player in plant Zn homeostasis. BioMetals, 26(4): 623-632. [DOI:10.1007/s10534-013-9643-1]
12. Du, X., H. Wang, J. He, B. Zhu, J. Guo, W. Hou and X. Zhang. 2018. Identification of nicotianamine synthase genes in Triticum monococcum and their expression under different Fe and Zn concentrations. Gene, 672: 1-7. [DOI:10.1016/j.gene.2018.06.015]
13. Ekhtiyari, M. and B. Abdollahi Mandoulakani. 2020. Effect of Zn deficiency stress on expression pattern of genes encoding bZIP4, bZIP79 and bZIP97 transcription factors in bread wheat (Triticum aestivum L.) cultivars. Iranian Society of Crops and Plant Breeding Sciences, 21(4): 344-353. [DOI:10.29252/abj.21.4.344]
14. Feizi, M., M. Solouki, B. Sadeghzadeh, B. Fakheri and A. Mohammadi. 2019. QTL Mapping for Higher Seed Zn Concentration and Content in Baley using SSR Markers. Journal of Crop Breeding, 11(30): 58-67. [DOI:10.29252/jcb.11.30.58]
15. Gao, L. and J. Xiong. 2018. Improving Rice Grain Quality by Enhancing Accumulation of Iron and Zinc While Minimizing Cadmium and Lead. Developments, 45 pp. [DOI:10.5772/intechopen.72826]
16. Ishimaru, Y., K. Bashir and N.K. Nishizawa. 2011. Zn Uptake and Translocation in Rice Plants. Rice, 4(1): 21-27. [DOI:10.1007/s12284-011-9061-3]
17. Masuda, H., K. Usuda, T. Kobayashi, Y. Ishimaru, Y. Kakei, M. Takahashi and N.K. Nishizawa. 2009. Overexpression of the Barley Nicotianamine Synthase Gene HvNAS1 Increases Iron and Zinc Concentrations in Rice Grains. Rice, 2(4): 155-166. [DOI:10.1007/s12284-009-9031-1]
18. Mattiello, E.M., H.A. Ruiz, J.C. Neves, M.C. Ventrella and W.L. Araújo. 2015. Zinc deficiency affects physiological and anatomical characteristics in maize leaves. Journal of plant physiology, 183: 138-143. [DOI:10.1016/j.jplph.2015.05.014]
19. Morrissey, J. and M.L. Guerinot. 2009. Iron Uptake and Transport in Plants: The Good, the Bad, and the Ionome. Chemical Reviews, 109(10): 4553-4567. [DOI:10.1021/cr900112r]
20. Niazkhani, S. M., B. Abdollahi Mandoulakani, M. Jafari and M. Rasouli-Sadaghiani. 1970. Studying the expression of ZIP1, ZIP3 and ZIP6 genes in bread wheat under Zn deficiency conditions. Cereal Research, 8(3): 345-358.
21. Paolacci, A. R., O. A. Tanzarella, E. Porceddu and M. Ciaffi. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10(1): 11. [DOI:10.1186/1471-2199-10-11]
22. Rao, X., X. Huang, Z. Zhou and X. Lin. 2013. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, bioinformatics and biomathematics, 3(3): 71-85.
23. Shoormij, F., S.S. Alavi Kia, M. Moghaddam Vahed and M. Toorchi. 2017. Genetic Variability of Zinc Efficiency in Some Iranian Spring Wheat Varieties. Journal of Crop Breeding, 8(19): 24-17.
24. Singh, S.P., B. Keller, W. Gruissem and N. K. Bhullar. 2017. Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet, 130(2): 283-292. [DOI:10.1007/s00122-016-2808-x]
25. Suzuki, M., K.C. Morikawa, H. Nakanishi, M. Takahashi, M. Saigusa, S. Mori and N.K. Nishizawa. 2008. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil science and plant nutrition, 54(1): 77-85. [DOI:10.1111/j.1747-0765.2007.00205.x]
26. Suzuki, M., M. Takahashi, T. Tsukamoto, S. Watanabe, S. Matsuhashi, J. Yazaki and N.K. Nishizawa. 2006. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant Journal, 48(1): 85-97. [DOI:10.1111/j.1365-313X.2006.02853.x]
27. Suzuki, M., T. Tsukamoto, H. Inoue, S. Watanabe, S. Matsuhashi, M. Takahashi and N.K. Nishizawa, N. K. 2008. Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol, 66(6): 609-617. [DOI:10.1007/s11103-008-9292-x]
28. Trampczynska, A., H. Küpper, W. Meyer-Klaucke, H. Schmidt and S. Clemens. 2010. Nicotianamine forms complexes with Zn (II) in vivo. Metallomics, 2(1): 57-66. [DOI:10.1039/B913299F]
29. Tucker, K.L. 2016. Nutrient intake, nutritional status, and cognitive function with aging. Annals of the New York Academy of Sciences, 1367(1): 38-49. [DOI:10.1111/nyas.13062]
30. Xie, X., W. Hu, X. Fan, H. Chen and M. Tang. 2019. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Frontiers in Plant Science, 10: 1172-1172. [DOI:10.3389/fpls.2019.01172]
31. Zhou, X., S. Li, Q. Zhao, X. Liu, S. Zhang, C. Sun and R. Chen. 2013. Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize. BMC Genomics, 14: 238. [DOI:10.1186/1471-2164-14-238]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb