دوره 12، شماره 33 - ( بهار 1399 )                   جلد 12 شماره 33 صفحات 150-161 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

alipour Z, gerami M, ghorbanpour A, majidian P. Study of some Morphological Responses of Stevia (Stevia rebaudiana Bertoni) to Chitosan Elicitor under Salt Stress. jcb. 2020; 12 (33) :150-161
URL: http://jcb.sanru.ac.ir/article-1-1084-fa.html
علی پور زینب، گرامی مهیار، قربانپور اکرم، مجیدیان پرستو. مطالعه برخی از پاسخهای مورفولوژیکی گیاه استویا (Stevia rebaudiana Bertoni) به اثرات القاگر کیتوزان در شرایط شوری. پژوهشنامه اصلاح گیاهان زراعی. 1399; 12 (33) :150-161

URL: http://jcb.sanru.ac.ir/article-1-1084-fa.html


استادیار، عضو هیئت علمی موسسه آموزش عالی سنا، ساری، ایران
چکیده:   (444 مشاهده)
     شوری خاک یکی از مهم ­ترین تنش‌های غیرزیستی می‌باشد که آثار منفی بر رشد و تولید گیاهان از جمله گیاهان ارزشمند دارویی نظیر گیاه استویا دارد. از این رو، هدف از این تحقیق، ارزیابی برهمکنش القاگر کیتوزان در چهار سطح (صفر، 2/0، 4/0 و 6/0 درصد) با شوری در چهار سطح (صفر، 50، 100 و 150 میلی‌مولار کلرید سدیم) بر روی  برخی صفات مورفولوژیکی گیاه استویا به صورت فاکتوریل در قالب طرح کاملاٌ تصادفی با سه تکرار در سال 96-95 در مؤسسه آموزش عالی غیرانتفاعی سنا بود. صفات مورد اندازه ­گیری شامل وزن تر، خشک ریشه و اندام هوایی، تعداد میانگره، تعداد برگ، ارتفاع گیاه، شاخص سطح برگ (LAI)، میزان رشد نسبی برگ (RLGR) و نسبت سطح برگ (LAR) بود. نتایج حاصل از تجزیه واریانس نشان داد که تنش شوری بر صفات ارتفاع گیاه، تعداد برگ، تعداد میانگره، وزن تر و خشک اندام‌های هوایی و ریشه، شاخص سطح برگ، نرخ رشد نسبی برگ  و نسبت سطح برگ به طور معنی‌داری تأثیر داشت. اما، برهمکنش کیتوزان و شوری سبب بهبود صفات مورد نظر گردید. برای مثال، افزایش تعداد میانگره در تیمار Ch2S2 (4/0 گرم بر لیتر کیتوزان-100 میلی‌مولار شوری)، افزایش تعداد برگ، سطح برگ، وزن تر و خشک ریشه، وزن تر و خشک اندام هوایی، طول ریشه در تیمار Ch1S3 (2/0 گرم بر لیتر کیتوزان-150 میلی­مولار شوری)، افزایش ارتفاع بوته در تیمار Ch2S2 (4/0 گرم بر لیتر کیتوزان و 100 میلی مولار شوری) و  تیمار Ch1S3 (2/0 گرم بر لیتر کیتوزان و 150 میلی مولار شوری) مشاهده گردید. علاوه بر آن، تیمار Ch1S2 (2/0 گرم بر لیتر کیتوزان-100 میلی‌مولار شوری)، تیمار Ch2S3 (4/0گرم بر لیتر کیتوزان-150 میلی‌مولار شوری) و تیمار Ch3S3 ( 6/0 گرم بر لیتر کیتوزان-150 میلی‌مولار شوری) روی LAR و تیمار Ch1S3 (2/0 گرم بر لیتر کیتوزان-150 میلی‌مولار شوری) روی RLGR افزایش معنی‌دار نشان دادند. در این راستا، یافته‌های این پژوهش می‌تواند اطلاعات مفیدی در ارتباط با تغییر صفات مورفولوژیک گیاه دارویی استویا در شرایط تنش شوری به القاگر کیتوزان را ارائه دهد تا با تقویت این صفات بتوان از این گیاه در برابر شرایط تنش محافظت کرد.
واژه‌های کلیدی: گیاه دارویی، القاگر، تنش غیرزیستی
متن کامل [PDF 1830 kb]   (86 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1398/7/14 | ویرایش نهایی: 1399/4/18 | پذیرش: 1398/11/8 | انتشار: 1399/2/29

فهرست منابع
1. Ali, H.M., M.H. Siddiqui, M.O. Basalah, M.H. Al-Whaibi, A.M. Sakran and A. Al-Amri. 2012. Effects of gibberellic acid on growth and photosynthetic pigments of Hibiscus sabdariffa L. under salt stress. African Journal of Biotechnology, 11: 800-804. [DOI:10.5897/AJB10.2187]
2. Badawy, M.E. and E.I. Rabea, 2009. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technology, 51(1): 110-117. [DOI:10.1016/j.postharvbio.2008.05.018]
3. Bandeh-Hagh, A., M. Toorchi, A. Mohammadi, N. Chaparzadeh, G.H. Salekdeh and H. Kazemnia. 2008. Growth and osmotic adjustment of canola genotypes in response to salinity. Journal of Food Agriculture and Environment, 6(2): 201.
4. Cho, M.H., H.K. No and W. Prinyawiwatkul. 2008. Chitosan treatments affect growth and selected quality of sunflower sprouts. Journal of Food Science, 73(1): S70-S77. [DOI:10.1111/j.1750-3841.2007.00607.x]
5. El-Hendawy, S.E., Y. Hu, G.M. Yakout, A.M. Awad, S.E. Hafiz and U. Schmidhalter. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy, 22(3): 243-253. [DOI:10.1016/j.eja.2004.03.002]
6. Emadodin, I. and H.R. Bork. 2012. Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview. Journal of Land Use Science, 7(2): 203-219. [DOI:10.1080/1747423X.2011.560292]
7. Emam, A.K., S.A. El-Refai and D. Degheele. 1988. Effect of sublethal dosages of four chitin synthesis inhibitors on the reproduction potential and F1-generation of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera, Noctuidae). Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent (Belgium), 53: 249-254.
8. Enteshari, S. and S. Sharifian. 2012. Influence of salicylic acid on growth and some biochemical parameters in a C 4 plant (Panicum miliaceum L.) under saline conditions. African Journal of Biotechnology, 11(3): 621-627. [DOI:10.5897/AJB11.1523]
9. Evans, H.E., C.C. Campbell and J.P. Utz. 1962. Infantile Disseminated Histoplasmosis: A Case Reporting Pillow Feathers as a Source of Infection. JAMA, 181(11): 999-1000. [DOI:10.1001/jama.1962.03050370067017c]
10. Farouk, L., A. Laroubi, R. Aboufatima, A. Benharref and A. Chait. 2008. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: Possible mechanisms involved. Journal of Ethnopharmacology, 115(3): 449-454. [DOI:10.1016/j.jep.2007.10.014]
11. Farouk, S., A.A. Mosa, A.A. Taha and A.M. El-Gahmery. 2011. Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. Journal of Stress Physiology and Biochemistry, 7(2).
12. Francois, L., E. Maas, T. Donovan and V. Youngs. 1986. Effect of salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and durum wheat. Agronomy Journal, 78: 1053-1058. [DOI:10.2134/agronj1986.00021962007800060023x]
13. Gerami, M., V. Akbarpour and A. Mohammadian. 2019. The Effect of Putrescine and Salicylic Acid on Physiological Characteristics and Antioxidant in Stevia Rebaudiana B. Under Salinity Stress. Journal of Crop Breeding, 11(29): 40-54. [DOI:10.29252/jcb.11.29.40]
14. Ghasemnezhad, M. and M.A. Shiri. 2010. Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences, 8(1): 25-33.
15. Gorai, M., M. Ennajeh, H. Khemira and M. Neffati. 2010. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(7): 462-470. [DOI:10.1016/j.flora.2009.12.021]
16. Gregersen, P.L., P.B. Holm and K. Krupinska. 2008. Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology, 10: 37-49. [DOI:10.1111/j.1438-8677.2008.00114.x]
17. Guan, Y.J., J. Hu, X.J. Wang and C.X. Shao. 2009. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10(6): 427-433. [DOI:10.1631/jzus.B0820373]
18. Hameed, A., M.A. Sheikh, A. Hameed, T. Farooq, S.M.A. Basra and A. Jamil. 2014. Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. Philippine Agricultural Scientists, 97(3): 294-299.
19. Hernández-Hernández, H., S. González-Morales, A. Benavides-Mendoza, H. Ortega-Ortiz, G. Cadenas-Pliego and A. Juárez-Maldonado. 2018. Effects of chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1): 178. [DOI:10.3390/molecules23010178]
20. Hien, N.Q. 2004. Radiation degradation of chitosan and some biological effects, Radiation Processing of Polysaccharides, 1422: 67.
21. Humphrey, T.V., A.S. Richman, R. Menassa and J.E. Brandle. 2006. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Molecular Biology, 61: 47-62. [DOI:10.1007/s11103-005-5966-9]
22. Ibrahim, I., M. Nasr, B. Mohammedm and M. El-Zefzafi. 2008. Nutrient factors affecting in vitro cultivation of Stevia rebaudiana. Sugar Tech, 10: 248-253. [DOI:10.1007/s12355-008-0044-7]
23. Karuppusamy, S. 2009. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research, 3: 1222-1239.
24. Khan, W.M., B. Prithiviraj and D.L. Smith. 2002. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynthetica, 40(4): 621-624. [DOI:10.1023/A:1024320606812]
25. Lemus-Mondaca, R., A. Vega-Gálvez, L. Zura-Bravo and K. Ah-Hen. 2012. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132: 1121-1132. [DOI:10.1016/j.foodchem.2011.11.140]
26. Mahdavi, B. and H. Safari. 2015. Effect of chitosan on growth and some physiological traits of chickpea under salinity stress. Plant Process and Function, 4(12): 117-127.
27. Mahdavi, S.A., S.M. Jafari, M. Ghorbani and E. Assadpoor. 2014. Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Drying Technology, 32(5): 509-518. [DOI:10.1080/07373937.2013.839562]
28. Malerba, M. and R. Cerana. 2016. Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7): 996. [DOI:10.3390/ijms17070996]
29. Mansouri, I., H. Najafi Zarini, N. Babaeian Jelodar and A. Pakdin. 2019. Evaluation of salt tolerance in some canola (Brassica napus L.) genotypes under normal and salt stress conditions. J Crop Breed, 11(30): 23-36. [DOI:10.29252/jcb.11.30.23]
30. Mansouri, A. and H. Omidi. 2018. Effect of chitosan nano particle and potassium nitrate on germination and some morpho-physiological characteristics of seedlings of quinoa (Chenopodium quinoa). Iranian Journal of Seed Research, 5(1): 147-159. [DOI:10.29252/yujs.5.1.147]
31. Martínez, G., G. Reyes, R. Falcón and V. Núñez 2015. Effect of seed treatment with chitosan on the growth of rice (Oryza sativa L.) seedlings cv. INCA LP-5 in saline medium. Cultivos Tropicales, 36(1): 143-150.
32. Meng, H., T. Xia, S. George and A.E. Nel. 2009. A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 3(7): 1620-1627. [DOI:10.1021/nn9005973]
33. Nedjimi, B. and Y. Daoud. 2009. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora-Morphology, Distribution, Functional Ecology of Plants, 204(4): 316-324. [DOI:10.1016/j.flora.2008.03.004]
34. Pandey, M. and S.K. Chikara. 2014. In vitro regeneration and effect of abiotic stress on physiology and biochemical content of Stevia rebaudiana 'Bertoni'. Journal of Plant Science Research, 1(3): 113.
35. Romanazzi, G., A.M. Fiore, M. Mali, A. Rizzuti, C. Leonelli, A. Nacci and M.M. Dell'Anna. 2018. Polymer supported Nickel nanoparticles as recyclable catalyst for the reduction of nitroarenes to anilines in aqueous medium. Molecular Catalysis, 446: 31-38. [DOI:10.1016/j.mcat.2017.12.015]
36. Samota, M.K., M. Sasi, M. Awana, O.P. Yadav, S.V. Amitha Mithra, A. Tyagi and A. Singh. 2017. Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Frontiers in Plant, 8: 934. [DOI:10.3389/fpls.2017.00934]
37. Sheikha, S.A. and F.M. Al-Malki. 2011. Growth and chlorophyll responses of bean plants to the chitosan applications. European Journal of Scientific Research, 50(1): 124-134.
38. Singh, P.K. and S. Gautam. 2013. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiologiae Plantarum, 35(8): 2345-2353. [DOI:10.1007/s11738-013-1279-9]
39. Singh, S. 2016. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique, Food Chemistry, 199: 176-184. [DOI:10.1016/j.foodchem.2015.11.127]
40. Uthairatanakij, A., J.A. Teixeira da Silva and K. Obsuwan. 2007. Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1(1): 1-5.
41. Wu, H. 2018. Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3): 215-225. [DOI:10.1016/j.cj.2018.01.003]
42. Zeng, D. and X. Luo. 2012. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science, 2(03): 282. [DOI:10.4236/ojss.2012.23034]
43. Zeng, J., W. Cai, W. Yang and W. Wu. 2013. Antioxidant abilities, phenolics and flavonoids contents in the ethanolic extracts of the stems and leaves of different Stevia rebaudiana Bert lines. Sugar Tech, 15(2): 209-213. [DOI:10.1007/s12355-013-0210-4]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb