دوره 11، شماره 32 - ( زمستان 1398 )                   جلد 11 شماره 32 صفحات 184-194 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dastneshan S, Sabokdast nodehi M. Evaluation of Tolerance Rate of Some Genotypes of Beans (Phaseolus Vulgaris L.) To Salinity Stress. jcb. 2019; 11 (32) :184-194
URL: http://jcb.sanru.ac.ir/article-1-1056-fa.html
دست نشان شکوفه، سبکدست نودهی منیژه. ارزیابی میزان تحمل برخی ژنوتیپ‌های لوبیا (Phaseolus vulgaris L.) به شوری. پژوهشنامه اصلاح گیاهان زراعی. 1398; 11 (32) :184-194

URL: http://jcb.sanru.ac.ir/article-1-1056-fa.html


گروه زراعت و اصلاح نباتات، دانشکده پردیس کشاورزی و منابع طبیعی دانشگاه تهران
چکیده:   (579 مشاهده)
     مطالعه صفات فیزیولوژیک و بیوشیمیایی می­توانند به شناخت راهکارهایی برای انتخاب ارقام متحمل و افزایش عملکرد در شرایط متنوع محیطی از جمله شرایط تنش شوری کمک کنند. به ­همین منظور، آزمایشی به ­صورت فاکتوریل در قالب طرحبلوک ­های کامل تصادفی با سه تکرار در گلخانه دانشکده کشاورزی دانشگاه تهران انجام شد. فاکتورهای آزمایشی شامل چهار سطح شوری (صفر (شاهد)، 50، 100 و 200 میلی­مولار نمک طعام) و شش ژنوتیپ لوبیا (جولس، ناز، 96، 20، 2 و 74) بود. سطوح تنش شوری پنج هفته پس از کاشت بذر اعمال شد و ده روز پس از اعمال تنش از سه برگچۀ دوم نمونه‌گیری شد. بعضی صفات بیوشیمیایی و فیزیولوژیک از قبیل میزان نشت الکترولیک، پرولین ، مالون دی­آلدئید، فعالیت آنزیم­های کاتالاز، گایاکول پراکسیداز و آسکوربات پراکسیداز، پلی فنل­اکسیداز و پروتئین محلول کل اندازه­ گیری شد. نتایج نشان داد تمامی
ژنوتیپ ­های مورد مطالعه با افزایش سطح نمک تحت تنش شوری قرار گرفتند، اما پاسخ آن‌ها به تنش متفاوت بود. در مجموع بیشترین و کمترین میزان پرولین، مالون دی آلدئید، فعالیت ­های آنزیمی کاتالاز، اسکوربات پراکسیداز، گایاکول پراکسیداز و پلی فنل اکسیداز در سطح 200 میلی­مولار نمک به­ ترتیب در ژنوتیپ جولس و ناز مشاهده شد. با بررسی صفات اندازه­ گیری شده و با مد نظر قرار دادن ویژگی­های فیزیولوژیکی و بیوشیمیایی ژنوتیپ جولس در قیاس با دیگر ژنوتیپ­ ها به تنش شوری متحمل بوده و به­ عنوان بهترین ژنوتیپ در شرایط این پژوهش معرفی شد.
متن کامل [PDF 1179 kb]   (108 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1398/3/10 | ویرایش نهایی: 1398/11/13 | پذیرش: 1398/7/9 | انتشار: 1398/10/23

فهرست منابع
1. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126. [DOI:10.1016/S0076-6879(84)05016-3]
2. Agarwal, P.K., P. Sheel, K. Gupta and B. Jha. 2013. Bioengineering for salinity tolerance in plants: State of the Art Molecular Biotechnology, 54: 102-123 [DOI:10.1007/s12033-012-9538-3]
3. Alexander, M. 1984. Ecology of rhizobium In Biological Nitrogen Fixation: Ecology, Technology. Physiology. Plenum Press, New York, 39. [DOI:10.1007/978-1-4613-2747-9_2]
4. Arzani, A. 2008. Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell. Development. Biology. Plant, 44: 373-383 [DOI:10.1007/s11627-008-9157-7]
5. Arzani, A. and M. Ashraf. 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical. Review. Plant Science, 35: 146-189 [DOI:10.1080/07352689.2016.1245056]
6. Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1): 84-93 [DOI:10.1016/j.biotechadv.2008.09.003]
7. Ashraf, M., Q. Ali. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environment. Experimental. Botany, 63: 266-273. [DOI:10.1016/j.envexpbot.2007.11.008]
8. Askary, M., A.A. Maghsoudi Moud and V.R. Saffari. 2013. Investigation of some physiological characteristics and grain yield of Corn (Zea mays L.) hybrids under salinity stress. Journal of Crop Production and Processing, 9(3): 93-103 (In Persian).
9. Azari, A., S.A.M. Modares Sanavi, H. Askari, F. Ghanati, A.M. Naji and B. Alizadeh. 2012. Effect of salt stress on morphological and physiological traits of two species of rapeseed (Brassica napus and B. rapa). Iranian Journal of Crop Sciences, 14(2): 121-135 (In Persian).
10. Baghizadeh, A., S. Mohammadinejad and M. Rahimi. 2019. Evaluation of Some Biochemical Characteristics of Some Red Bean Ecotypes under Drought Stress Conditions. . Journal of Crop Breeding, 11(29): 55-64 (In Persian). [DOI:10.29252/jcb.11.29.55]
11. Bates, L.S., R.P .Waldren and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207. [DOI:10.1007/BF00018060]
12. Bandeoglu, E., F. Eyidogan, M. Yucel and H.A. Oktem. 2004. Antioxidant response of shoots and roots of lentil to NaCl Salinity stress. Plant Growth Regulation, 42: 69-77. [DOI:10.1023/B:GROW.0000014891.35427.7b]
13. Bayuelo-Jiménes, J.S., D.G. Debouck and J.P. Lynch. 2002. Salinity tolerance of Phaseolus species during early vegetative growth. Crop Science, 42: 2184-2192. [DOI:10.2135/cropsci2002.2184]
14. Berova M., Z. Zlatev and N. Stoeva. 2002. Effect of paclobutrazol on wheat seedlings under low temperature stress. Journal Plant Physiology, 28: 75-84.
15. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry, 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
16. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidase. Methods in Enzymology, 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
17. Daneshmandi, M.S.H. and M. Azizi. 2008. The study on the effect of water stress and Super Absorbent polymer (SAP) on some quantity and quality characteristics of Sweet basil (Ocimum basilicum L. var. keshkeny levelu). Inthernational Iranian Horticultural Science Congress, At Rasht, Iran.
18. Demiral, T. and I. Turkan. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Botany, 53: 247-257. [DOI:10.1016/j.envexpbot.2004.03.017]
19. Di Cori, P., S. Lucioli, A. Frattarelli, P. Nota, E. Tel-Or, E. Benyamini, H. Gottlieb, E. Caboni and C. Forni. 2013. Characterization of the response of in vitro cultured Myrtus communis L. plants to high concentrations of NaCl. Plant Physiology and Biochemistry, 73: 420-426. [DOI:10.1016/j.plaphy.2013.10.026]
20. FAO Statistical Yearbook. 2013. World Food and Agriculture.
21. FAO. 2016. FAO Soils Portal. Availableat: http://www.fao.org/soils-portal/soil- management/management-of-some-problem-soils/salt-affected-soils/more- information-on-salt-affected-soils/en/.
22. Gerami, M., A. Mohammadian and V. Akbarpour. 2019. The Effect of Putrescine and Salicylic Acid on Physiological Characteristics and Antioxidant in Stevia Rebaudiana B. Under Salinity Stress. Journal of Crop Breeding, 11(29): 40-54 (In Persian). [DOI:10.29252/jcb.11.29.40]
23. Ghorbani Ghozhdi, H. 2005. Grapes. In: H. Ghorbani Ghozhdi & A. Ladanmoghadam, Intraduction to oxidative stresses and palnt strians (In Persian).
24. Gill, S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochemistry, 48: 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
25. Guo, R., W. Hao and D. Gong. 2012. Effects of water stress on germination and growth of linseed seedlings (Linum usi-tatissimum L.), photosynthetic efficiency and accumulation of metabolites. Journal of Agricultural Science, 4: 253. [DOI:10.5539/jas.v4n10p253]
26. Gupta, B. and B. Huang. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical and Molecular Characterization. International Journal of Genomics, 1-18. [DOI:10.1155/2014/701596]
27. Hanin, M., C. Ebel, M. Ngom, L. Laplaze and K. Masmoudi. 2016. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front Plant Science, 7: 1787. [DOI:10.3389/fpls.2016.01787]
28. Hatamnia, A.A., N. Abbaspour, R. Darvishzadeh, F. Rahmani and R. Heidari. 2013. Tobacco responds to salt term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163: 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
29. Hayat, S., Q. Hayat, M.N. Alyemeni and A.S. Wanil. 2012. Role of proline under changing environments: a review. Plant Signal. Behavvior, 7: 1456-1466. [DOI:10.4161/psb.21949]
30. Heath, R.L. and L. Packer. 1968. Photo peroxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochemistry Biophysics, 125: 189-198. [DOI:10.1016/0003-9861(68)90654-1]
31. Hoque, M., E. Okuma, M. Banu, Y. Nakamura, Y. Shimoishi and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164: 553-561. [DOI:10.1016/j.jplph.2006.03.010]
32. Jabari, F., A. Ahmadi and K. Poustini. 2006. Relationships between anti-oxidant enzymes activates and chlorophyll content of different wheat cultivars. Journal of Agricultural Science, 37(1): 307-316.
33. Jebara, S., M. Jebara, F. Limam and M. Elarbi Aouani. 2005. Changes in ascorbate peroxidase,catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Plant Physiology, 162: 929-936 [DOI:10.1016/j.jplph.2004.10.005]
34. Jome Bidokhti, E. 2014. Invistigation on growth chatacteristics, grain yield and yield components of some varieties Chickpea (Cicer arietinum L.) under salinity stress. M.Sc. Thesis in agronomy, Faculty of Agriculture University of Birjand (In Persian).
35. Kar, M. and D. Mishra. 1976. Catalase, Peroxidase and polyphenolxidase activities during rice leaf senescence. Plant Physiology, 57: 315-319. [DOI:10.1104/pp.57.2.315]
36. Karray-Bouraoui, N., M. Rabhi, H. Attia, F. Harbaoui, I. Jallali, R. Ksouri, N. Msilini and M. Lachaâl. 2011 Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiologiae Plantarum, 33: 1435-1444. [DOI:10.1007/s11738-010-0679-3]
37. Kaur, G., H.P. Singh, D.R. Batish and R.K. Kohli. 2012. Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal. Environment. Biology, 33(2): 265-9.
38. Khalesro, S.H. and M. Aghaalikhani. 2007. Effect of salinity and water deficit stress on seed germination. pajouhesh and Sazandegi, 77: 153-163 (In Persian).
39. Khan, N.A. and S. Singh. 2008. Abiotic stress and plant responses. I K International Publishing House, New Delhi, 312 pp.
40. Kumar, S.A., S. Beena, A. Monika and A. Singh. 2017. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat (Triticum aestivum) Genotypes with Contrasting Salt Tolerance. Plant Science, 8(1151): 1-10. [DOI:10.3389/fpls.2017.01151]
41. Läuchli, A. 1984. Salt exclusion: An adaptation of legumes for crops and pastures under saline conditions. In Salinity Tolerance in plants: Strategies for Crop Improvement, Staples, eds. R.C., Toenniessen, G. H., Wiley, New York, 155-159.
42. Masood, S.A., M. Hasanuzzaman, M.I.R. Khan and N.A. Anjum. 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenic. Plant Physiology and Biochemistry, 115: 126-140. [DOI:10.1016/j.plaphy.2017.03.018]
43. Moradi, F. and M.I. Abdelbaghi. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Botany, 99: 1161-1173. [DOI:10.1093/aob/mcm052]
44. Mudgal V., N. Madaan, A. Mudgal. 2010. Biochemical Mechanisms of salt Tolerance in Plants: A Review. International Journal of Botany, 6: 136-143. [DOI:10.3923/ijb.2010.136.143]
45. Munns, R. and R.A. James. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253: 201-218. [DOI:10.1023/A:1024553303144]
46. Rasoolnia, A., M.R. Bi hamta, A. Peyghambari, H. Alizade, S. Takallo and M. Kamalizade. 2012. Evaluation of leaf proteome pattern and antioxidant activity of barley under salinity stress. Iranian Journal of Field Science, 43(2): 231-241 (In Persian).
47. Roxas, V.P., R.K. Smith, E.R. Allen and R.D. Allen. 1997. Over expression of glutathione Stransferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotech, 15: 988-991. [DOI:10.1038/nbt1097-988]
48. Rout, N.P. and B.P. Shaw. 2001. Salt tolerance in aquatic macrophytes: Possible Involvement of the antioxidative enzymes. Plant Science, 160: 415-423. [DOI:10.1016/S0168-9452(00)00406-4]
49. Sabokdast. M., M. Dashtaki Y. Sasani and A. Rezaizadeh .2017. Effect of drought stress on some agronomic characteristics, grain yield and its components in bean genotypes. Iranian Journal of Field Crop Science, 48(4): 1201-1209 (In Persian).
50. Sairam, R.K., K.V. Rao and G.C. Srivastava. 2002. Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. Plant Science, 163: 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
51. Shi, D. and Y. Sheng. 2004. Effect of various salts alkaline mixed stress conditions on sunflower seedling and analysis of their stress factors. Environmental and Experimental Botany, 54: 8-21. [DOI:10.1016/j.envexpbot.2004.05.003]
52. Shao, H.B., Z.S. Liang and M.A. Shao. 2005. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids and Surfaces Biointerfaces, 45: 7-13. [DOI:10.1016/j.colsurfb.2005.06.016]
53. Siddiqi, E.H., M. Ashraf, F. Al-Qurainy and N.A. Akram. 2011. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Journal of the Science of Food and Agriculture, 91: 2785-2793. [DOI:10.1002/jsfa.4522]
54. Summart, J., P. Thanonkeo, S. Panichajakul, P. Prathepha and M.T. Mc Manse. 2010. Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Kaho Dawk Mail 105, Callus Culture, 9(2): 145-152.
55. Szabados, L. and A. Savoure. 2010. Proline: a multifunctional amino acid. Trends Plant Science, 15: 89-97. [DOI:10.1016/j.tplants.2009.11.009]
56. Tuteja, N. and S.S. Gill. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
57. Velikova, V., I. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Journal. Plant Science, 151: 59-66. [DOI:10.1016/S0168-9452(99)00197-1]
58. Yasar, F., S. Ellialtiogluand, K. Yildiz. 2008. Effect of salt stress on antioxidant defense systems, lipid peroxidation and chlorophyll content in green bean. Russian Journal Plant Physic, 55(6): 782-786. [DOI:10.1134/S1021443708060071]
59. Yildiz, M. and H. Terzi. 2013. Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi. Journal of Agricultural Sciences, 19: 79-88. [DOI:10.1501/Tarimbil_0000001232]
60. Zhang, Z.H., Q. Liu, H.X. Song, X.M. Rong and A.M. Ismail. 2012. Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. African Journal Agriculture. Research, 7: 19-27. [DOI:10.5897/AJAR11.834]
61. Zhang, Y.J., X. Zhang, C.J. Chen, M.J. Zhou and H.C. Wang. 2010. Effects of fungicides JS399- 19, azoxystrobin, tebuconazloe and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pesticide Biochemistry and Physiology, 98: 151-157. [DOI:10.1016/j.pestbp.2010.04.007]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb