Volume 9, Issue 24 (3-2018)                   jcb 2018, 9(24): 69-78 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Younesi-Melerdi E, Nematzadeh G A, Shokri E. (2018). Isolation and Gene Expression Investigation in Photosynthetic Isoform of Phosphoenolpyruvate Carboxylase Gene in Halophytic Grass Aeluropus Littoralis under Salinity Stress. jcb. 9(24), 69-78. doi:10.29252/jcb.9.24.69
URL: http://jcb.sanru.ac.ir/article-1-939-en.html
Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
Abstract:   (3999 Views)
C4 plants have very high photosynthetic efficiency under drought stress due to lower water usage and do not require the opening and closing of stomata. This advantage has been created by complementary mechanisms of primary carboxylation in leaves mesophilic cells. In species which are initial carboxylation of mesophilic CO2 during C4 photosynthesis and crassulacean acid metabolism done, the PEPc enzyme catalyses the irreversible reaction of phosphoenolpyruvate in the presence of bicarbonate ions to produce oxaloacetate. The aim of the present study was to partial isolation of pepc coding sequence from halophytic grass Aeluropus littoralis, studying codon bias pattern and also quantitative analysis of its expression in 0 (control) and 600 mM NaCl relative to beta actin gene expression as internal control using Real-time PCR. As a result, a 678 bp fragment of pepc gene coding sequence was isolated and registered in NCBI gene bank under KP122945 accession number. The isolated fragment showed highest homology (in protein level) with Eragrostis minor and Zoysia japonica species and its CAI index was estimated 0.82. Finally, the quantitative analysis of gene expression under 600 mM salt stress showed that the level of pepc gene transcription was increased about 3 times (compared to control)  in response to stress.
Full-Text [PDF 3872 kb]   (1269 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2018/03/10 | Revised: 2019/04/14 | Accepted: 2018/03/10 | Published: 2018/03/10

References
1. Amzallag, G.N., H.R. Lerner and A. Poljakoff-Mayber. 1990. Exogenous ABA as a modulator of the response of sorghum to high salinity. Journal of Experimental Botany, 41: 1529-1534 [DOI:10.1093/jxb/41.12.1529]
2. Bandyopadhyay, A., K. Datta, J. Zhang, W. Yang, S. Raychaudhuri, M. Miyao and S.K. Datta. 2007. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Science, 172: 1204-1209. [DOI:10.1016/j.plantsci.2007.02.016]
3. Barozai, M.Y.K., A.G. Kakar and M. Din. 2012. The relationship between codon usage bias and salt resistant genes in Arabidopsis thaliana and Oryza sativa. Pure and Applied Biology, 1: 48-51. [DOI:10.19045/bspab.2012.12005]
4. Chollet, R., J. Vidal and M.H. O'Leary. 1996. Phosphoenolpyruvatecarboxylase: a ubiquitous ,highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 273-298. [DOI:10.1146/annurev.arplant.47.1.273]
5. Chu, C., Z. Dai, M.S.B. Ku and G.E. Edwards. 1990. Induction of crassulacean acid metabolism in facultative halophyte Mesembryanthemum crystallinum by absisic acid. Plant Physiol, 98-3: 1253-1266. [DOI:10.1104/pp.93.3.1253]
6. DaSilva, J.M. and M.C. Arrabaca. 2004. Photosynthetic enzymes of C4 grass Seteria sphacelata under water stress: a comparison between rapid and slowly imposed water deficit. Photosynthetica, 42: 43-47. [DOI:10.1023/B:PHOT.0000040568.58103.ca]
7. Doubnerova, V. and H. Ryslava. 2011. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 180: 575-583. [DOI:10.1016/j.plantsci.2010.12.005]
8. Echevarrı'a, C., J. Vidal, J. A. Jiao and R. Chollet. 1990. Reversible light activation of phosphoenolpyruvate carboxylase protein-serine kinase in maize leaves. FEBS Letter, 275: 25-28. [DOI:10.1016/0014-5793(90)81430-V]
9. Echevarrı'a, C., S. Garcı'a-Maurin,˜O.R. Alvarez, A. Soler and J. Vidal. 2001. Salt stress increases the Ca2+-independent phosphoenolpyruvatecarboxylase kinase activity in Sorghum plants. Planta, 214: 283-287. [DOI:10.1007/s004250100616]
10. Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. Wiley and Sons, New York.
11. Golovnina, K.A., S.A. Glushkov, A.G. Blinov, L.R. Adkison and N.P. Goncharov. 2007. Molecula phylogeny of the genus Triticum. Plant Systematics and Evolution, 264: 195-216. [DOI:10.1007/s00606-006-0478-x]
12. Gonzalez, M.C., R. Sanchez and F.J. Cejudo. 2003. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 216: 985-992.
13. Hall, T. 1999. BioEdit computer program, version 7.0.9, Tom Hall, Ibis Biosciences, Carlsbad CA. Available from: http://www.mbio.ncsu.edu/BioEdit/bioedit.html
14. Harrison, R.J. and B. Charlesworth. 2011. Biased gene conversion affects patterns of codon usage and amino acid usage in the Saccharomyces sensu stricto group of yeasts. Molecular biology and evolution, 28: 117-129. [DOI:10.1093/molbev/msq191]
15. Izui, K., H. Matsumura, T. Furumoto and Y. Kai. 2004. Phosphoenolpyruvate carboxylase: a newera of structural biology. Annu. Rev. Plant Biology, 55: 69-84 [DOI:10.1146/annurev.arplant.55.031903.141619]
16. Izui, K., M. Taguchi and H. Katsuki. 1980. Regulation of Escherichia Morikaw coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. Estimation of the activities in the cells grown on various compounds. Journal of Biochemistry, 87(2): 441-449. [DOI:10.1093/oxfordjournals.jbchem.a132764]
17. Kai, Y., M. Yasushi, M. Hiroyoshi and I. Katsura. 2003. "Phosphoenolpyruvate carboxylase: threedimensionalstructure and molecular mechanisms".Archives of Biochemistry and Biophysics, 414 (2): 170-179. [DOI:10.1016/S0003-9861(03)00170-X]
18. Kai, Y., M. Hiroyoshi, T. Inoue, K. Terada, Y. Nagara, T. Yoshinaga, A. Kihara, K. Tsumura and K. Izui. 1999. "Three-dimensional structure of phosphoenolpyruvate carboxylase: A proposed mechanism for allostericinhibition". Proceedings of the National Academyof Sciences, 96(3): 823-828. [DOI:10.1073/pnas.96.3.823]
19. Leegood Richard, C. 2013. Strategies for engineering C4 photosynthesis. Journal of Plant Physiology, 170: 378-388. [DOI:10.1016/j.jplph.2012.10.011]
20. Li, B. and R. Chollet. 1994. Salt induction and the partial purification/ characterization of phosphoenolpyruvate carboxylase protein serinekinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Archives of Biochemistry and Biophysics, 307: 416-419.
21. Manns, R., R.A. James and A. Lauchi. 2006. Approaches to increasing the salt tolerance in wheat and other cereals. Journal of Exprimental Botany, 57: 1025-1043. [DOI:10.1093/jxb/erj100]
22. Mohseni, A., Gh.A. Nematzadeh, A. Dehestani Kelagari, B. Shahin Kaleybar and E. Soleimani. 2016. Cloning and bioinformatics analysis of MDHAR gene from Aeluropus Littoralis and over-expression analysis in Nicotina Tabacum. Journal of Crop Breeding, 8: 219-230 (In Persian). [DOI:10.18869/acadpub.jcb.8.17.230]
23. Morikawa, M., K. Izui, M. Taguchi and H. Katsuki. 1980. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. Estimation of the activities in the cells grown on various compounds. Journal of Biochemistry, 87(2): 441-449. [DOI:10.1093/oxfordjournals.jbchem.a132764]
24. Naghavi, M.R., M.A. Malboobi and S. Rashidi. 2009. Bioinformatics. University of Tehran Press, (In Persian).
25. Nilsen, E.T. and D.M. Orcutt. 1996. The physiology of plants under stress: abiotic factors. Wiley, New York.
26. Palidwor, G.A., T.J. Perkins and X. Xia. 2010. A general model of codon bias due to GC mutational bias. PLoS One, 5(10): e13431. [DOI:10.1371/journal.pone.0013431]
27. Paulus, J.K., D. Schlieper and G. Groth. 2013. Greater efficiency of photosynthetic carbonfixation due to single amino-acid substitution. Nature Communications, (2): 1518. [DOI:10.2210/pdb3zge/pdb]
28. Pfaffle, M.W. 2004. Quantification strategies in real-time PCR. Chaper 3 pages 87 - 112 in: A-Z of quantitative PCR (Editor: S.A. Bustin) International University Line (IUL) La Jolla, CA, USA publication.
29. Piotr, Ch. and N. Sacchi. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols, 1: 581-585 [DOI:10.1038/nprot.2006.83]
30. Poustini, K. and D. A. Baker. 1994. Photosynthetic responses of two wheat cultivars to salinity. Iranian, Journal of Agricultural Science, 25(1): 61-69 (In Persian).
31. Puigbo, P., I.G. Bravo and S. Garcia-Vallve. 2008. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics, 9:65. [DOI:10.1186/1471-2105-9-65]
32. Sage, R.F. 2004. The evolution of C4 photosynthesis. New Phytol., 161: 341-70. [DOI:10.1111/j.1469-8137.2004.00974.x]
33. Shahin Kaleybar, B., Gh.A. Nematzadeh, S.H.R. Hashemi, H. Askari and S. Kabirnataj. 2012. Physiological and Genetic Responses of Halophyte Aeluropus Littoralis to Salinity. Journal of Crop Breeding, 5: 15-29 (In Persian).
34. Sánchez, R., A. Flores and F.J. Cejudo. 2006. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 223: 901-909. [DOI:10.1007/s00425-005-0144-5]
35. Sánchez. R. and F.J. Cejudo. 2003. Identification and expression analysis of a gene encoding a bacterial- type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 132: 949-957. [DOI:10.1104/pp.102.019653]
36. Sankhla, N. and W. Huber. 1974. Regulation of balance between C3 and C4 pathway: role of abscisic acid. Zeitschrift für Pflanzenphysiologie, 74: 267-271 [DOI:10.1016/S0044-328X(75)80172-3]
37. Schaeffer, H.J., N.R. Forsthoefel and J.C. Cushman. 1995. Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Molecular Biology, 28: 205-218 [DOI:10.1007/BF00020241]
38. Schroeder, J.I., J.M. Kwak and G.J. Allen. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 410: 327-330. [DOI:10.1038/35066500]
39. Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599. [DOI:10.1093/molbev/msm092]
40. Tcherkez G.G.B., G.D. Farquhar and T.J. Andrews. 2006. Despite slow catalysis and confused substratespecificity, all ribulose bisphosphate carboxylases may be nearly perfectlyoptimized. Proc. Natl. Acad. Science, USA, 103: 7246-51. [DOI:10.1073/pnas.0600605103]
41. Tian, C., Q. Jiang, F. Wang, G. Wang, Z. Xu and Ai. Xiong. 2015. Selection of Suitable Reference Genes for qPCR Normalization under Abiotic Stresses and Hormone Stimuli in Carrot Leaves. Plos One, 10(2): e0117569. [DOI:10.1371/journal.pone.0117569]
42. Turner, N.C., G.C. Wright and K.H.M. Siddique. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Advances in agronomy, 71: 193-231 [DOI:10.1016/S0065-2113(01)71015-2]
43. Vidal, J., J.N. Pierre and C. Echevarrı'a. 1996. The regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase: a cardinal event in C4 photosynthesis. In: Verma DPS (ed) Signal transduction in plant and development. Springer, Berlin HeidelbergNew York, pp: 141-166. [DOI:10.1007/978-3-7091-7474-6_6]
44. Yanagisawa, S. and J. Sheen. 1998. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 10: 75-89. [DOI:10.1105/tpc.10.1.75]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb