دوره 17، شماره 1 - ( بهار 1404 )                   جلد 17 شماره 1 صفحات 158-142 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arab E, Ahangar L, Biabani A. (2026). The Effect of Chitosan Priming on Germination and Biochemical Characteristics of Black Seed (Nigella sativa L.) under Cadmium Stress. J Crop Breed. 17(1), 142-158. doi:10.61186/jcb.17.1.142
URL: http://jcb.sanru.ac.ir/article-1-1586-fa.html
عرب الهه، آهنگر لیلا، بیابانی عباس. تاثیر پرایمینگ بذر کیتوزان بر ویژگی‎ های جوانه‌زنی و خصوصیات بیوشیمیایی گیاهچه‎ های سیاه‎دانه (Nigella sativa L.) تحت تنش کادمیوم پژوهشنامه اصلاح گیاهان زراعی 1404; 17 (1) :158-142 10.61186/jcb.17.1.142

URL: http://jcb.sanru.ac.ir/article-1-1586-fa.html


1- دانشکده علوم کشاورزی و منابع طبیعی گنبد، دانشگاه گنبدکاووس، گرگان، ایران
2- گروه تولیدات گیاهی، دانشکده علوم کشاورزی و منابع طبیعی گنبد، دانشگاه گنبد کاووس، گرگان، ایران
چکیده:   (488 مشاهده)
چکیده مبسوط
مقدمه و هدف: سیاهدانه (Nigella sativa L.) از خانواده آلالگان (Ranunculaceae)، یکی از آنتیاکسیدانهای مفید طبیعی بهشمار میرود که برای روغن تهیه شده از بذرهای آن خواص مختلف دارویی از جمله ضد سرطانی، ضد میکروبی، ضد فشارخون، ضد دیابت و محافظ کبد و افزایش ایمنی بدن گزارش شده است. سیاهدانه همانند سایر گیاهان دائماً در معرض تنش‌های غیرزیستی و یا زیستی قرار می‌گیرد. عمدهترین تنشهای غیرزیستی که گیاهان در معرض آن قرار دارند شامل دمای شدید، خشکسالی، شوری زیاد و فلزات سنگین میباشند. آلودگی زیستمحیطی ناشی از فلزات سنگین رو به افزایش میباشد. در بین فلزات سنگین، کادمیوم یکی از سمیترین عناصر برای موجودات زنده است که بهدلیل افزایش مقدار آن در محیط طی دهههای اخیر بسیار مورد توجه قرار گرفته است. این عنصر در غلظتهای بسیار کم نیز برای اکثر گیاهان سمی است، در حالیکه در غلظتهای بالاتر از پنج تا ده میکروگرم بر گرم وزن خشک برگ، میتواند منجر به مرگ گیاه شود. وجود این عنصر در محیط رشد گیاهان سبب مسمومیت زیاد از جمله اختلال در روابط آب و گیاه، اختلال در بیوسنتز کلروفیل و تشکیل یونهای آزاد میگردد. لذا اتخاذ روشهای مناسب زیست محیطی جهت کاهش و یا حذف تاثیرات منفی و غیرقابل جبران این فلز در کشاورزی ضروری است. پرایمینگ بذر یک روش کارامد برای بهبود عملکرد گیاه با افزایش تحمل گیاه به تنش شناخته شده است. یکی از انواع روشهای پرایمینگ استفاده از مواد شیمیای مانند کیتوزان است. کیتوزان یک ماده غیر سمی و سازگار با محیط زیست است که به دلیل فعالیت آنتی اکسیدانی در برخورد با آسیبهای اکسیداتیو حاصل از تنش محیطی بسیار حائز اهمیت است. بنابراین در این پژوهش به بررسی تاثیر پرایمینگ کیتوزان بر کاهش اثرات مخرب کادمیوم بر خصوصیات جوانهزنی و بیوشیمیایی سیاهدانه پرداخته شد.
مواد و روشها: در این مطالعه بهمنظور بررسی تاثیر پرایمینگ کیتوزان در تنش کلریدکادمیوم بر خصوصیات جوانهزنی و بیوشیمیایی سیاهدانه، آزمایشی بهصورت فاکتوریل در قالب طرح کاملا تصادفی با 4 تکرار در پتریهای استریل در آزمایشگاههای دانشگاه کشاورزی شهر گنبدکاووس در سال1402 اجرا شد.  برای پرایمینگ بذور با غلظتهای مختلف کیتوزان (0/2، 0/4، 0/6، 0/8 , 1 درصد)، بذرها بهمدت 3 ساعت تحت شرایط تاریکی درون محلولهای مورد نظر غوطهور شدند و پس از خشک شدن بر روی بستر کاغذ واتمن در پتری‌ها قرار داده شدند. سپس مقدار 5 میلیلیتر از محلولهای آماده شده با غلظتهای مختلف کلرید کادمیوم (شاهد، 1000،750،500،250میکرو مولار) به آنها اضافه گردید. برای تیمار شاهد از آب مقطر استفاده شد. در نهایت جوانهزنی بذرها بهمدت 10 روز در شرایط تاریکی در دستگاه ژرمیناتور با دمای 1±25 درجه سلسیوس انجام شد. در انتهای آزمایش صفات درصد جوانهزنی، سرعت جوانهزنی، شاخص بنیه گیاهچه، طول ریشهچه و ساقهچه اندازهگیری شد. سپس صفات بیوشیمیایی مانند آنزیمهای کاتالاز، پراکسیداز، فنل، قند محلول و پرولین بعد از 14 روز اندازهگیری شد. تجزیه و تحلیل آماری داده ها با استفاده از نرمافزار  SAS 9.1  و MSTAT-C انجام شد.
یافتهها: نتایج تجزیه واریانس حاکی از معنیدار بودن اثرات ساده پرایمینگ با کیتوزان و تنش کادمیوم بر تمامی صفات مورد بررسی بود. همچنین اثرات متقابل پرایمنگ× تنش کادمیوم نیز برای تمامی صفات در سطح 1 درصد معنیدار بود. مقایسه میانگین دادهها نشان داد که با افزایش غلظت کادمیوم درصد و سرعت جوانهزنی، طول ریشهچه و شاخص بنیه بذر به‏طور معنیداری کاهش یافت بهطوریکه بیشترین میزان این صفات در سطح شاهد و 250 میکرومولار کلریدکادمیوم و کمترین میزان این صفات در غلظت 1000 میکرومولار کلریدکادمیوم مشاهده شد. کاربرد کیتوزان به صورت پرایمینگ سبب بهبود صفات جوانهزنی، طول ریشهچه و ساقهچه و شاخص بنیه بذر در تیمارهای 0/2 و 0/4 درصدی کیتوزان نسبت به شاهد شد در حالیکه با افزایش درصد کیتوزان ( 0/8 و 1 درصد) میزان این صفات بهطور معنیداری کاهش یافت. نتایج مقایسه میانگین صفات تحت برهمکنش پرایمینگ کیتوزان و کادمیوم نشان داد که بهکارگیری پرایمینگ بذر با کیتوزان توانست تا حدودی اثرات منفی تنش کلریدکادمیوم بر صفات درصد و سرعت جوانهزنی، شاخص بنیه و طول ریشهچه و ساقهچه را تقلیل دهد. بهطوریکه بیشترین میزان این صفات در تیمار 0/2 و 0/4 درصد کیتوزان و تنش 250 و 500 میکرومولار مولار کادمیوم مشاهده شد. همچنین نتایج مطالعات حاضر نشان داد که افزایش غلظت کلریدکادمیوم سبب افزایش میزان فعالیت آنزیمهای آنتیاکسیدانی از قبیل کاتالاز، پراکسیداز و آنتیاکسیدانهای غیرآنزیمی مانند پرولین و فنل میگردد. بهطوریکه آنزیم پراکسیداز در سطح 750 میکرومولار کلریدکادمیوم (0/0053 میکرومول برگرم بافت تازه) با افزایش 178/2 درصدی نسبت به شاهد و فنل در تیمار 1000 میکرومولار آلودگی با کلریدکادمیوم (3/2 میلی گرم بر گرم عصاره) با افزایش 211/7 درصدی نسبت به شاهد بیشترین سطح فعالیت خود را نشان دادند. استفاده از تکنیک پرایمینگ بذر با کیتوزان، توانست میزان محتوی این پروتئینها را بهطور قابل توجهی در گیاهان تحت تنش کادمیوم افزایش دهد. بهطوریکه بیشترین میزان آنزیم پراکسیداز در شرایط 500 میکرو مولار کلریدکادمیوم در تیمار پرایمینگ 0/4 درصد کیتوزان (0/0083 میکرومول برگرم بافت تازه) و در شرایط 750 میکرومولار کلرید کادمیوم در تیمار پرایمینگ 2/0 درصد کیتوزان (0/0082 میکرومول برگرم بافت تازه) دیده شد که این میزان به ترتیب حدود 64 و 57/6 درصد بیشتر از شاهدشان بود.
نتیجه گیری: نتایج این پژوهش نشان داد که تنش کادمیوم منجر به کاهش شاخصهای جوانهزنی شده و سیستم دفاعی گیاه را تضعیف میکند. گیاه برای مقابله با این تغییرات و کاهش اثرات سوء حاصل از ROSهای تولیدشده، میزان فعالیت آنزیمهای آنتیاکسیدان را افزایش داد، اما اثرات نامطلوب کادمیوم تاثیری بازدارنده بر این تغییرات داشت. با اینحال کاربرد کیتوزان به شکل پرایمینگ از اثرات مضر کادمیوم ممانعت نموده و منجر به افزایش فعالیت آنزیمهای آنتیکسیدانشده و فرآیند جوانهزنی را در برابر سمیت این فلز سنگین محافظت کرد. اگرچه کاربرد تا 0/6 درصد کیتوزان بهبود دهنده این مکانیزمها بود ولی با افزایش غلظت این ماده از اثرات سودمند آن کاسته شد. بر اساس نتایج مطالعه حاضر میتوان اینگونه بیان نمود که کاربرد کیتوزان سبب فعال شدن برخی مکانیسمهای بیوشیمیایی و فیزیولوژیکی در گیاه سیاهدانه در رابطه با تنش گردید. لذا میتوان استفاده از پرایمینگ بذر با کیتوزان را به‌عنوان یک راهکار مؤثر برای افزایش تحمل سیاهدانه به تنش کادمیوم پیشنهاد نمود.

 
متن کامل [PDF 1585 kb]   (46 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1403/3/29 | پذیرش: 1403/8/8

فهرست منابع
1. Abdallah, M. M. S., Ramadan, A., El-Bassiouny, H. M. S., & Bakry, B. A. (2020) Regulation of antioxidant system in wheat cultivars by using chitosan or salicylic acid to improve growth and yield under salinity stress. Asian. Journal of Plant Science, 19, 114-126. https://doi.org/ 10.3923/ajps.2020.114.126 [DOI:10.3923/ajps.2020.114.126]
2. Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y., Suyu, J., AtaUl-Karim, S.T., Tian, Z., Jiang, D., Snider, J.L., & Dai, T. (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 145, 12-20. [DOI:10.1016/j.envexpbot.2017.10.002]
3. Aghighi Shahverdi, M., Omidi, H., & Mousavi, S.E. (2017) Effect of chitosan on seed germination and biochemical traits of milk thistle (Silybum marianum) seedling under salt stress. Iran. Journal of Seed Research, 3(2), 105-118. [DOI:10.29252/yujs.3.2.105]
4. Akramian, M., Hosseini, A., Kazerooni, M., & Rezvani, M.J. (2007) Effect of seed osmopriming
5. on germination and seedling development of fennel (Foeniculum vulgare Mill.). Iran. Journal of Field Crop Research, 5(1), 37-46. https://doi.org 10.22067/GSC.V5I1.894
6. Arabshahi-Delouee, S., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry, 102(4), 1233-1240. [DOI:10.1016/j.foodchem.2006.07.013]
7. Asad, S. A., Farooq, M., Afzal, A., & West, H. (2019). Integrated phytobial heavy metal remediation strategies for a sustainable clean environment-A review. Chemosphere, 217: 925-941. [DOI:10.1016/j.chemosphere.2018.11.021]
8. Asada K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology, 50, 601-639. [DOI:10.1146/annurev.arplant.50.1.601]
9. Aycicek, M., Kaplan, O. & Yaman, M. (2008) Effect of cadmium on germination, seedling growth and metal contents of sunflower (Helianthus annus L.). Asian Journal of Chemistry, 20(4), 2663-2672.
10. Balestrasse, K. B., Gallego, S.M., & Tomaro, M. L. (2004). Cadmium-induced senescence in nodules of soybean (Glycin max L.) plants. Plant and Soil, 262, 373-381. [DOI:10.1023/B:PLSO.0000037056.11877.7b]
11. Basra, S. M. A., Afzal, I., Anwar, S., Anwar-ul-haq, M., Shafq, M. & Majeed, K. (2006) Alleviation of salinity stress by seed invigoration techniques in wheat (Triticum aestivum L.). Seed Technology, 28, 36-46.
12. Bates, S., Waldern, R. P., &Teare, E.D. (1973). Rapide determination of free proline for water stress studies. Plant and Soli, 39:205-207. [DOI:10.1007/BF00018060]
13. Behboud, R., Moradi, A., & Farajee, H. (2020) Effect of Different Chitosan Concentrations on Seed Germination and Some Biochemical Traits of Sweet Corn (Zea mays var. Saccharata) Seedling under Osmotic Stress Conditions. Iran Journal of Seed Research, 7(1), 1 [DOI:10.29252/yujs.7.1.1]
14. Benkaci-ali, F., Akloul, R., Boukenouche, A., & De Pauw, E. (2013) Composition of the essential oil of Nigella sativa seeds extracted by microwave steam distillation. Journal of Essent Oil Bear Plant, 16, 781-794. https://doi.org/10.1080/0972060X.2013.813275 [DOI:10.1080/0972060X.2013.813275.]
15. Bermudes, G. M. A., Moreno, M, Invernizzi, R, Pla, R., & Pignata, M. L. (2010). Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere, 78, 375-381. [DOI:10.1016/j.chemosphere.2009.11.012]
16. Caruso, G., Cavaliere, C., Foglia, P., Gubbiotti, R., Samperi, R., & Lagana, A. (2009) Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Journal of Plant Science, 177, 570-576. [DOI:10.1016/j.plantsci.2009.08.007]
17. Chance, B., & Maehly, A. C. (1995) Assay of catalases and peroxidases. Methode Enzyme. 2, 764-775.‌ [DOI:10.1016/S0076-6879(55)02300-8]
18. Choudhury, S., & Panda, S. K. (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in (Oryza sativa L.) roots. Bulgar Journal of Plant Physiol, 30, 95-110.
19. Cui, L., Shi, G., & Li, G. (2021) Effects of Zn and Cd on Physiological and Biochemical Characteristics, and Heavy Metal Accumulation of Landscape Plants. Journal of Anqing Normal Univ, 27, 79-87. [DOI:10.13757/j.cnki.cn34-1328/n.2021.02.016]
20. Dragicevic, V., Spasic, M., Simic, M., Dumanovic, Z., & Nikolic, B. (2013) Stimulative infuence of germination and growth of maize seedlings originating from aged seeds by 2,4-D potencies. Homeopathy, 102(3), 179-186. [DOI:10.1016/j.homp.2013.05.005]
21. Ekmekci, Y., Tanyolac, D., & Ayhan, B. (2008) Effect of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiol, 165, 600-611. https://doi.org/ 10.1016/j.jplph.2007.01.017 [DOI:10.1016/j.jplph.2007.01.017]
22. Emami Bistgani, Z., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A., & Hashemi, M. (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop Journal, 5, 407-415. [DOI:10.1016/j.cj.2017.04.003]
23. Naderi, S., Fakheri, B., & Esmailzadeh Bahabadi, S. (2014). Increasing of Chavicol o-Methyl Transfrase Gene Expression and Catalase and Ascorbate Peroxidase Enzymes ctivity of Ocimum basilicum by Chitosan. Crop Biotechnology, 3(3), 1-9.
24. Fallah, S., Malekzadeh, S., & Pessarakli, M. (2017). Seed priming improves seedling emergence and reduces oxidative stress in Nigella sativa under soil moisture stress. Journal of Plant Nutrition, 41(1), 29-40. [DOI:10.1080/01904167.2017.1381719]
25. Fan, L., Zheng, S., & Wang, X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid-and ethylene-promoted senescence of postharvest Arabidopsis leaves. The Plant Cell, 9, 2183-2196. [DOI:10.1105/tpc.9.12.2183]
26. Gengmao, Z., Quanmei, S., Yu, H., Shihui, L., & Changhai, W. (2014). The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PloS One, 9(2), e89624.‌ [DOI:10.1371/journal.pone.0089624]
27. Gerami, M., Ghorbani, A., & Karimi, S. (2018) Role of salicylic acid pretreatment in alleviating cadmium-induced toxicity in Salvia officinalis L. Iranian Journal of Plant Biology, 10(1), 81-95. [DOI:10.22108/IJPB.2018.108633.1069]
28. Ghosh, R., & Roy, S. (2019). Cadmium toxicity in plants. In M. Hasanuzzaman, M. N. V. [DOI:10.1016/B978-0-12-815794-7.00008-4]
29. Prasad & K. Nahar (Eds.), Cadmium tolerance in plants (pp. 223-246). Elsevier Inc.
30. https://doi.org/10.1016/B978-0-12-815794-7.00008-4 [DOI:10.1016/b978-0-12-815794-7.00008-4]
31. Górnik, K., Grzesik, M., & Romanowska-Duda, B. (2008). The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. Journal of Fruit and Ornamental Plant Research, 16, 333-343.
32. Guan, Y. J., Hu, J., Wang, X. J., & Shao, C. X. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10, 427-433. [DOI:10.1631/jzus.B0820373]
33. Guilherme, M.F.S., Oliveira, H.M., & Silva, E.D. (2015). Cadmium toxicity on seed germination and seedling growth of wheat Triticum aestivum. Acta Scientiarum Biol Sciences, 37(4), 499-504. [DOI:10.4025/actascibiolsci.v37i4.28148]
34. Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M., & Farooq, M. (2021). Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicology and Environmental Safety. 211, 111887. [DOI:10.1016/j.ecoenv.2020.111887]
35. Hasanuzzaman, M., Nahar, K., & Fujita, M. (2018). Plants under metal and metalloid stress-Responses, tolerance and remediation (M. Hasanuzzaman, K. Nahar, & M. Fujita (Eds.)). Springer Nature. [DOI:10.1007/978-981-13-2242-6]
36. Hidangmayum, A., & Dwivedi, P. (2018), Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. Journal of Pharmacogn Phytochem, 7(1), 758-766
37. Huang, G. T., Ma, S. L., Bai, L. P., Zhang, L., Ma, H., Jia, P., ... & Guo, Z. F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports, 39, 969-987. [DOI:10.1007/s11033-011-0823-1]
38. John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2009). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production. 3(3),1735-8043. https://doi.org/ 10.22069/IJPP.2012.653 [DOI:10.22069/IJPP.2012.653]
39. Kakar, H. A., Ullah, S., Shah, W., Ali, B., Satti, S. Z., Ullah, R., & Ercisli, S. (2023). Seed priming modulates physiological and agronomic attributes of maize (Zea mays L.) under induced polyethylene glycol osmotic stress. ACS omega, 8(25), 22788-22808. [DOI:10.1021/acsomega.3c01715]
40. Kalai, T., Bouthour, D., Manai, J., Bettaieb Ben Kaab, L., & Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archives of Agronomy and Soil Science, 62(6), 892-904. http://dx.doi.org/10.1080/03650340.2015.1100295 [DOI:10.1080/03650340.2015.1100295]
41. Kalai, T., Khamassi, K., Teixeira da Silva, J.A., Gouia, H. & Ben-Kaab, L.B. (2014(. Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds. Archives of Agronomy and Soil Science, 60(6), 765-783 [DOI:10.1080/03650340.2013.838001]
42. Kanafi Lesko Kelayeh M, Bagheri N, Babaeian Jelodar N, Ghajar Sepanlou M. (2021). Effect of Cadmium Stress on Morphophysiological Traits of Rice Seedlings. Journal of Crop Breeding. 13(37), 11-21. https://doi.org/10.52547/jcb.13.37.11 [DOI:10.52547/jcb.13.37.11 [In Persian]]
43. Abbasi Khalaki, M., Moameri, M., Asgari Lajayer, B., & Astatkie, T. (2021). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant growth regulation, 93(1), 13-28. https://doi.org/10.1007/s10725-020-00670-9 [DOI:10.1007/s10725- 020-00670-9.]
44. Khatamipour, M., Piri, E., Esmaeilian, Y., & Tavassoli, A. (2011). Toxic effect of cadmium on germination, seedling growth and proline content of Milk thistle (Silybum marianum). Annals of Biological Research. 2(5), 527-532.
45. Liu, H., Zheng, Z., Han, X., Zhang, C., Li, H., & Wu, M. (2022). Chitosan Soaking Improves Seed Germination of Platycodon Grandiflorus and Enhances Its Growth, Photosynthesis, Resistance, Yield, and Quality. Horticulturae, 8(10), 943. [DOI:10.3390/horticulturae8100943]
46. Liu, T. T., Wu, P., Wang, L. H., & Zhou, Q. (2011). Response of soybean seed germination to cadmium and acid rain. Biological Trace Element Research, 144, 1186-1196. [DOI:10.1007/s12011-011-9053-6]
47. Madadi, M., Khomari, S., Javadi, A., & Sofalian, O. (2016). Effect of black cumin seed priming with calcium nitrate and nano-zinc oxide on germinability and seedling growth under salinity stress. Journal of Plant Process and Function, 5(15), 169-171. [DOI:20.1001.1.23222727.1395.5.15.14.7]
48. Mahdavi Betoul, S. A. M., Agha Alikhani, M. & Sharif M. (2013). The effect of different concentrations of chitosan on seed germination and antioxidant enzymes of safflower (Carthamus tinctorius L.) under water stress conditions. Journal of Plant Research, 26(3), 352-365. [DOI:20.1001.1.23832592.1392.26.3.12.7]
49. Mahdipour, F., Saadatmand, S., Iranbakhsh, A., Norozi, B., & Ardebili, Z. O. (2022). Study of the effect of the chitosan and chitosan nanoparticles on some physiological and phytochemical features of Nigella sativa L.‌ Eco-phytochem Med Plant, 10(2), 96-113 [DOI:10.30495/EJMP.2022.1945580.1664]
50. Mamgain, J., Mujib, A., Bansal, Y., Gulzar, B., Zafar, N., Syeed, R., & Dewir, Y. H. (2023). Elicitation induced α-amyrin synthesis in tylophora indica in vitro cultures and comparative phytochemical analyses of in vivo and micropropagated plants. Plants, 13(1), 122.‌ [DOI:10.3390/plants13010122]
51. Menon, P., Joshi, N., & Joshi, A. (2016). Effect of heavy metals on seed germination of Trigonella foenum-graceum L. International Journal of Life-Sciences Scientific Research, 2(4), 488-493.‌ [DOI:10.21276/ijlssr.2016.2.4.27]
52. Miller, T. R., & Chapman, S. R. (1978). Germination responses of three forage grasses to different concentrations of six salts. Rangeland Ecology & Management/Journal of Range Management Archives, 31(2), 123-124.‌ [DOI:10.2307/3897659]
53. Mohamed, A. A., Castagna, A., Ranieri, A., & di Toppi, L. S. (2012). Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 57, 15-22.‌ https://doi.org/10.1016/j.plaphy.2012.05.002 [DOI:10.1016/j.plaphy.2012.05.002.]
54. Moosavi, A., Tavakkol-Afshari, R., Sharif-Zadeh, F., & Aynehband, A. (2009). Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. J. Food Agric. Environ, 7(3-4), 353-358.‌ []
55. Naderi, S., Fakheri, B. A., & Bahrami, M. (2014). Effect of chitosan on some physiological and biochemical indices of (Carum copticum L.). Agricultural Research in the Arid Areas, 1(2), 187-201 ‌ [DOI:10.22034/CSRAR.01.01.05]
56. Noori, H., Moosavi, S. G., Seghatoleslami, M., & Rostampour, M. F. (2022). Responses of cumin (Cuminum cyminum L.) to different seed priming methods under osmotic stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12600-12600.‌ [DOI:10.15835/nbha50112600]
57. Pagter, M., Bragato, C., Malagoli, M., & Brix, H. (2009). Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany, 90(1), 43-51.‌ [DOI:10.1016/j.aquabot.2008.05.005]
58. Perveen, S., Shahbaz, M., Iqbal, M., Akram, M. S., Parveen, A., & Ali, H. M. M. (2016). Induction of cadmium stress tolerance in Triticum aestivum L. by alfalfa leaf extract. Appl Ecol Environ Res, 14, 121-136.‌ [DOI:10.1007/s00299-015-1784-y]
59. Radha, J., Srivastava, S., Solomon, S., Shrivastava, A. K. & Chandra, A. (2010). Impact of excess zinc on growth parameters cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp). Acta Physio Plant, 32: 979-986. [DOI:10.1007/s11738-010-0487-9]
60. Rady, M. M., Elrys, A. S., El-Maati, M. F. A., & Desoky, E. S. M. (2019). Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiology and Biochemistry, 139, 558-568.‌ [DOI:10.1016/j.plaphy.2019.04.025]
61. Rahneshan, M., Taliei, F., Ahangar, L., Sabouri, H., & Kia, S. (2019). Effect of Chitosan on the Expression Pattern of Some Pathogenecity Related Genes in Wheat Infected with Powdery Mildew. Journal of Crop Breeding, 11(32), 124-132.‌ [In Persian] [DOI:10.29252/jcb.11.32.124]
62. Rahneshan, M., Taliei, F., Ahangar, L., Sabouri, H., & Kia, S. (2019). Effect of Chitosan on the Expression Pattern of Some Pathogenecity Related Genes in Wheat Infected with Powdery Mildew. Journal of Crop Breeding, 11(32), 124-132. [In Persian] [DOI:10.29252/jcb.11.32.124]
63. Rahoui, S., Chaoui, A., & El Ferjani, E. (2010). Membrane damage and solute leakage from germinating pea seed under cadmium stress. Journal of hazardous materials, 178(1-3), 1128-1131.‌ [DOI:10.1016/j.jhazmat.2010.01.115]
64. Rahoui, S., Chaoui, A., Ben, C., Rickauer, M., Gentzbittel, L., & El Ferjani, E. (2015). Effect of cadmium pollution on mobilization of embryo reserves in seedlings of six contrasted Medicago truncatula lines. Phytochemistry, 111, 98-106.‌ [DOI:10.1016/j.phytochem.2014.12.002]
65. Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70(6), 1085-1096.‌ [DOI:10.1016/j.chemosphere.2007.07.056]
66. Schieber, M. & Chandel, N.S. (2014) ROS function in redox signaling and oxidative stress. Current biology, 19(24), 453-462. Doi: 10.1016/j.cub.2014.03.034. PMID: 24845678; PMCID: PMC4055301. http://dx.doi.org/10.1016/j.cub.2014.03.034 [DOI:10.1016/j.cub.2014.03.034]
67. Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. Journal of experimental botany, 53(372), 1351-1365.‌ [DOI:10.1093/jexbot/53.372.1351]
68. Sedghi, M., Nemati, A., & Esmaielpour, B. (2010). Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emirates Journal of Food and Agriculture, 22(2), 130.‌ https://doi.org/ 10.9755/ejfa. v22i2.4900 https://doi.org/10.9755/ejfa.v22i2.4900 [DOI:10.9755/ejfa. v22i2.4900]
69. Shao, C., Hu, J., Song, W. & Hu, W.J. (2005) Effects of seed priming with chitosan solutions of
70. different acidity on seed germination and physiological characteristics of maize seedling.
71. Journal of Agric Life Sci, 31(6), 705-708. [DOI:10.5555/20053221241]
72. Sheikhzadeh, P., Zare, N., & Abootalebi, S. (2022). The effect of cadmium stress on photosynthetic pigments and secondary metabolites in borage (Borago officinalis L.). Environmental Stresses in Crop Sciences, 15(4), 1143-1160.‌ [DOI:10.22077/escs.2021.4245.1996]
73. Spanany, A., & Fallah, S. (2016). The effect of cadmium stress on seeds germination characteristics of some medicinal plants under in vitro conditions.‌ Iran Journal of Med Arom Plant, 32(3), 527-542. [DOI:10.22092/ijmapr.2016.106833]
74. Tabrizi, L., Mohamadi, S. & Motasharezade, B. (2016) The Effect of Arbuscular Mycorrhizal Fungi on Growth and Yield of Rosemary (Rosmarinus officinalis L.) Under Lead and Cadmium Stress. Journal of Environ Sci, 13(2), 37-48 []
75. Tavakoli Hasanaklo, H., Abadi, A., Tavakoli Hasanaklo, N., & Permon, Gh. (2015). Reducing of cadmium stress effects on black seed (Nigella sativa) by glycinebetaine pretreatment of seeds. Plant Proc Func, 4(11), 99-112. https://doi.org/ 20.1001.1.23222727.1394.4.11.4.2 [DOI:20.1001.1.23222727.1394.4.11.4.2]
76. Vijayaragavan, M., Prabhahar, C., Sureshkumar, J., Natarajan, A., Vijayarengan, P., & Sharavanan, S. (2011). Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. International Multidisciplinary Research Journal, 1(5).
77. Wang, Y., Qian, J., Zhang, C., & Zhang, Z. (2024). Effects of Cadmium Stress on Seed Germination and Physiology and Biochemistry during Early Seedling Growth of Masson Pine (Pinus massoniana Lamb.). Forest Science, 70(3), 242-249. [DOI:10.1093/forsci/fxae010]
78. White, P. J., & Brown, P. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073-1080. [DOI:10.1093/aob/mcq085]
79. Jia, X., Rajib, M. R., & Yin, H. (2020). Recognition pattern, functional mechanism and application of chitin and chitosan oligosaccharides in sustainable agriculture. Current Pharmaceutical Design, 26(29), 3508-3521. [DOI:10.2174/1381612826666200617165915]
80. Zhang, F., Zhang, H., Wang, G., Xu, L., & Shen, Z. (2009). Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. Journal of Hazardous Materials, 168(1), 76-84. [DOI:10.1016/j.jhazmat.2009.02.002]
81. Zhou, Y. G., Yang, Y. D., Qi, Y. G., Zhang, Z. M., Wang, X. J., & Hu, X. J. (2002). Effects of chitosan on some physiological activity in germinating seed of peanut. Journal of Peanut Science, 31(1), 22-25.
82. Ziaee, T., Moharreri, N., & Hosseinzadeh, H. (2012). Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. Journal of Plant, 2, 16-42. [DOI:10.5555/20123341055]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb