دوره 15، شماره 48 - ( زمستان 1402 )                   جلد 15 شماره 48 صفحات 163-154 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، ایران
2- موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت
3- گروه علوم گیاهی و گیاهان دارویی، دانشکده کشاورزی مشگین‌شهر، دانشگاه محقق اردبیلی، ایران
چکیده:   (1043 مشاهده)
مقدمه و هدف: درجه حرارت ژلاتینی شدن از مهمترین ویژگی تعیین زمان پخت و شاخص مهم کیفیت دانه برنج است. دمای ژلاتینی شدن به‌عنوان دمایی تعریف میشود که در آن گرانولهای نشاسته برنج شروع به ازدست‌دادن غیر قابل برگشت ماهیت و نظم کریستالی خود میکنند. در این پژوهش به‌منظور تفکیک ارقام گزینشی برنج بر اساس تفاوت در درجه حرارت ژلاتینه شدن به غربالگری فنوتیپی و مولکولی ۵۰ ژنوتیپ مختلف واریتههای محلی و اصلاحشده برنج پرداخته شد.
مواد و روشها: بذور موردنیاز مورد مطالعه از کلکسیون مؤسسه تحقیقات برنج کشور تهیه شده و پس از کشت در مزرعه تحقیقاتی مؤسسه تحقیقات برنج بذور تولید شده برداشت و اندازه‌گیری صفت درجه حرارت ژلاتینی شدن دانههای برنج بر پایه آزمون سنجش فنوتیپی با روش هیدروکسید پتاسیم 1/7 دهم درصد و ارزیابی مولکولی با استفاده از نشانگر (Alk) (از ژنهای کنترل‌کننده دمای ژلاتینی شدن) انجام شده و جهت تحلیل همبستگی میان ژن‌ها و فنوتیپ، از مدل رگرسیون لجستیک استفاده گردید.
یافتهها: بر اساس ارزیابی فنوتیپی بر پایه صفت بیوشیمیایی درجه حرارت ژلاتینی ایجاد شده برای نمونههای مختلف برنج، مشخص گردید از ۵۰ ژنوتیپ، ۳۳ رقم با درجه حرارت ژلاتینی شدن ۳ تا ۵ و ۱۷ مورد با درجه حرارت ژلاتینی شدن ۷-۶ بود. در ارزیابی مولکولی نشانگر (Alk) 33 رقم با درجه حرارت ژلاتینی شدن 3 تا 5 را از هم تفکیک کرد.
نتیجه‌گیری: روش هیدروکسید پتاسیم 1/7 دهم درصد کارایی لازم جهت متمایز نمودن ژنوتیپهای با درجه حرارت ژلاتینی شدن مختلف را دارد. نشانگر (Alk) نیز کارایی لازم در تفکیک ژنوتیپهای با درجه حرارت ژلاتینی شدن متوسط را دارد.

 
متن کامل [PDF 1886 kb]   (254 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1401/10/25 | پذیرش: 1402/2/13

فهرست منابع
1. Amom, T., & Nongdam, P. (2017). The use of molecular marker methods in plants: a review. International Journal of Current Research and Review, 9(17), 1-7.
2. Ball, S. G., & Morell, M. K. (2003). From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual review of plant biology, 54(1), 207-233. [DOI:10.1146/annurev.arplant.54.031902.134927]
3. Bao, J. (2019). Rice milling quality. In Rice (pp. 339-369). AACC International Press. [DOI:10.1016/B978-0-12-811508-4.00010-1]
4. Bao, J., Shen, S., Sun, M., & Corke, H. (2006). Analysis of genotypic diversity in the starch physicochemical properties of nonwaxy rice: apparent amylose content, pasting viscosity and gel texture. Starch‐Stärke, 58(6), 259-267. [DOI:10.1002/star.200500469]
5. Bhattacharya, K. R., Sowbhagya, C. M., & Indudhara Swamy, Y. M. (1978). Importance of insoluble amylose as a determinant of rice quality. Journal of the Science of Food and Agriculture, 29(4), 359-364. [DOI:10.1002/jsfa.2740290410]
6. Bhattacharya, K. R. (1979). Gelatinization temperature of rice starch and its determination. Chemical aspects of rice grain quality, 231-269.
7. Belitz, H.D., Grosch, W., Schieberle, P. (2009). Food Chemistry, 4th ed. Springer, Berlin Heidelberg.
8. Bohra, A., Bharadwaj, C., Radhakrishnan, T., Singh, N. P., & Varshney, R. K. (2019). Translational genomics and molecular breeding for enhancing precision and efficiency in crop improvement programs: Some examples in legumes. Indian Journal of Genetics and Plant Breeding, 79(Sup-01), 227-240. [DOI:10.31742/IJGPB.79S.1.13]
9. Chemutai, L. R., Musyoki, M. A., Kioko, W. F., Mwenda, N. S., Muriira, K. G., & Piero, N. M. (2016). Genetic diversity studies on selected rice (Oryza sativa L.) genotypes based on gel consistency and alkali digestion. J Rice Res, 4(172), 2. [DOI:10.4172/2375-4338.1000172]
10. Concepcion, J. C. T., Proud, C., & Fitzgerald, M. A. (2020). Genomics and molecular markers for rice grain quality: A review. The Future of Rice Demand: Quality Beyond Productivity, 425-444. [DOI:10.1007/978-3-030-37510-2_18]
11. Conner, T. (2004). Precision breeding: A new genetic technique providing international opportunities for crop improvement. Seed Quest. Available online: https://www.seedquest.com (accessed on 15 April 2020).
12. Custodio, M. C., Cuevas, R. P., Ynion, J., Laborte, A. G., Velasco, M. L., & Demont, M. (2019). Rice quality: How is it defined by consumers, industry, food scientists, and geneticists?. Trends in food science & technology, 92, 122-137. [DOI:10.1016/j.tifs.2019.07.039]
13. Datta, A., Ullah, H., & Ferdous, Z. (2017). Water management in rice. Rice production worldwide, 255-277. [DOI:10.1007/978-3-319-47516-5_11]
14. Cruz, N. D., & Khush, G. S. (2000). Rice grain quality evaluation procedures. Aromatic rices, 3, 15-28.
15. Doyle, J. J. (1990). Isolation of plant DNA from faesh tissue. Focus, 12, 13-15.
16. Eliasson, A. C. (Ed.). (2004). Starch in food: Structure, function and applications. CRC press. [DOI:10.1201/9781439823347]
17. Fiaz, S., Lv, S., Barman, H. N., Sahr, T., Jiao, G., Wei, X., ... & Hu, P. (2019). Analysis of genomic regions governing cooking and eating quality traits using a recombinant inbred population in rice (Oryza sativa L.). Int. J. Agric. Biol, 22, 611-619.
18. Gao, Z., Zeng, D., Cui, X., Zhou, Y., Yan, M., Huang, D., ... & Qian, Q. (2003). Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Science in China Series C: Life Sciences, 46, 661-668. [DOI:10.1360/03yc0099]
19. Graham, R. (2002). A proposal for IRRI to establish a grain quality and nutrition research center (No. 2169-2019-1615).
20. Griebel, S., Webb, M. M., Campanella, O. H., Craig, B. A., Weil, C. F., & Tuinstra, M. R. (2019). The alkali spreading phenotype in Sorghum bicolor and its relationship to starch gelatinization. Journal of Cereal Science, 86, 41-47. [DOI:10.1016/j.jcs.2019.01.002]
21. Habibi., Yahiizadeh., Hosseini Chalantari., Tadjadi Talab., & Kobri. (2012). Investigating the gelatinization properties of Iranian rice cultivars by differential calorimetry. Cereal Research, 2(2), 95-105.(In Persian).
22. He, P., Li, S. G., Qian, Q., Ma, Y. Q., Li, J. Z., Wang, W. M., ... & Zhu, L. H. (1999). Genetic analysis of rice grain quality. Theoretical and Applied Genetics, 98, 502-508. [DOI:10.1007/s001220051098]
23. Jin, F., Hua, S., Xu, H., Yang, L., Jiang, Y., Xu, Z., & Shao, X. (2018). Comparisons of plant-type properties and grain quality in filial generations of Indica× Japonica hybridization grown in different rice-growing areas of China. International Journal of Agriculture and Biology, 20(5), 959-965.
24. Juliano, B. O., Bautista, G. M., Lugay, J. C., & Reyes, A. C. (1964). Rice quality, studies on physicochemical properties of rice. Journal of agricultural and food chemistry, 12(2), 131-138. [DOI:10.1021/jf60132a010]
25. Juliano, B. O. (2010). Grain quality of Philippine rice. Philippine Rice Research Institute.
26. Karkalas, J., Ma, S., Morrison, W. R., & Pethrick, R. A. (1995). Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydrate Research, 268(2), 233-247. [DOI:10.1016/0008-6215(94)00336-E]
27. Thilakarathne, B. A. A. S., Karunathilaka, K. M. H. L., Rathnayake, P. G. R. G., Udawela, U. A. K. S., & Sooriyapathirana, S. D. S. S. (2022). Assessment of Marker-trait Associations for Amylose Content, Gelatinization Temperature and Yield in Sri Lankan Rice Varieties. [DOI:10.4038/sljae.v4i1.87]
28. Keerthivarman, K., S. J. Hepziba, R. P. Gnanmalar and J. Ramalingam. (2019). Grain qualit valuation of rice (Oryza sativa L.) landrace collection from Tamil Nadu. International Journal of Chemical Studies. 7 (3): 4125-4127.
29. Khorasani, I., Fahmideh, L., Babaiyan, N., Ranjbar, G., & Najafi M. A.(2020). Investigating the yield and quality traits of some rice genotypes (Oryza sativa L.). (In Persian).
30. Li, K., Bao, J., Corke, H., & Sun, M. (2017). Association analysis of markers derived from starch biosynthesis related genes with starch physicochemical properties in the USDA rice mini-core collection. Frontiers in Plant Science, 8, 424. [DOI:10.3389/fpls.2017.00424]
31. Little, R. R. (1958). Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem., 35, 111-126.
32. Mariotti, M., Fongaro, L., & Catenacci, F. (2010). Alkali spreading value and image analysis. Journal of Cereal Science, 52(2), 227-235. [DOI:10.1016/j.jcs.2010.05.011]
33. Mubaraki, A., Safarzaei, A., Shakuri, Sh., Heydari Majd, M. (2012). Chemistry of food carbohydrates (translation). Publications of Zahedan University of Medical Sciences. (In Persian).
34. Normand, F. L., & Marshall, W. E. (1989). Differential scanning calorimetry of whole grain milled rice and milled rice flour. Cereal chem, 66(4), 317-320.
35. Pang, Y., Ali, J., Wang, X., Franje, N. J., Revilleza, J. E., Xu, J., & Li, Z. (2016). Relationship of rice grain amylose, gelatinization temperature and pasting properties for breeding better eating and cooking quality of rice varieties. PloS one, 11(12), e0168483. [DOI:10.1371/journal.pone.0168483]
36. Perry, P. A., & Donald, A. M. (2002). The effect of sugars on the gelatinisation of starch. Carbohydrate Polymers, 49(2), 155-165. [DOI:10.1016/S0144-8617(01)00324-1]
37. Pourkazem, A. (2015). Shalizar 2. "Collection of Rice Bachelor's Student Projects". 407 pages. In Persian.
38. Ramezanpour, A., Pirdashti, H., Pirdashti, H., & Bahari Saravi, S. H. (2015). Agronomy Journal (Pajouhesh & Sazandegi) No: 107 pp: 8-16 Investigation of the quality traits and their relationship with grain yield in promising lines of rice (Oryza sativa L.). Applied Field Crops Research, 28(107), 8-16.
39. Sabouri, H., Dadras, A. R., Sabouri, A., & Katouzi, M. (2015). Identification of Quantitative Genes of Protein Content and Gelatinization Temperature in Recombinant Inbreed Lines of Cross of Anbarbu× Sepidroud. (In Persian).
40. Sharma, A., & Jaiswal, H. K. (2020). Heterosis for yield and grain quality parameters in basmati rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11(4), 1106-1115. [DOI:10.37992/2020.1104.179]
41. Singh, R. K., Singh, U. S. & Kush, G. S. (2000). Aromatic rices: Rice Grain Quality Evaluation Procedures. Oxford & IBH Publishing Co. Pvt. Ltd., 1: 15-27.
42. Tan, Y. F., Li, J. X., Yu, S. B., Xing, Y. Z., Xu, C. G., & Zhang, Q. (1999). The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theoretical and Applied Genetics, 99, 642-648. [DOI:10.1007/s001220051279]
43. Tarang, A., Kordrostami, M., Shahdi Kumleh, A., Hosseini Chaleshtori, M., Forghani Saravani, A., Ghanbarzadeh, M., & Sattari, M. (2020). Study of genetic diversity in rice (Oryza sativa L.) cultivars of Central and Western Asia using microsatellite markers tightly linked to important quality and yield related traits. Genetic Resources and Crop Evolution, 67, 1537-1550. [DOI:10.1007/s10722-020-00927-2]
44. Tian, R., Jiang, G. H., Shen, L. H., Wang, L. Q., & He, Y. Q. (2005). Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Molecular Breeding, 15, 117-124. [DOI:10.1007/s11032-004-3270-z]
45. UM, D., & Thanyasiriwat, T. (2020). Molecular Screening for Amylose Content, Gel Consistency, and Gelatinization Temperature in Landrace Rice Varieties (Doctoral dissertation, Kasetsart University).
46. Umemoto, T., & Aoki, N. (2005). Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Functional plant biology, 32(9), 763-768. [DOI:10.1071/FP04214]
47. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in plant science, 10(12), 621-630. [DOI:10.1016/j.tplants.2005.10.004]
48. Wang, L. Q., Liu, W. J., Xu, Y., He, Y. Q., Luo, L. J., Xing, Y. Z., ... & Zhang, Q. (2007). Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theoretical and Applied Genetics, 115, 463-476. [DOI:10.1007/s00122-007-0580-7]
49. Wu, Y. P., Pu, C. H., Lin, H. Y., Huang, H. Y., Huang, Y. C., Hong, C. Y., ... & Lin, Y. R. (2015). Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Science, 233, 44-52. [DOI:10.1016/j.plantsci.2014.12.011]
50. Zeeman, S. C., Kossmann, J., & Smith, A. M. (2010). Starch: its metabolism, evolution, and biotechnological modification in plants. Annual review of plant biology, 61, 209-234. [DOI:10.1146/annurev-arplant-042809-112301]
51. Zhou, Y., Zheng, H., Wei, G., Zhou, H., Han, Y., Bai, X., ... & Han, Y. (2016). Nucleotide diversity and molecular evolution of the ALK gene in cultivated rice and its wild relatives. Plant Molecular Biology Reporter, 34, 923-930. [DOI:10.1007/s11105-016-0975-1]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.