دوره 13، شماره 39 - ( پاییز 1400 1400 )                   جلد 13 شماره 39 صفحات 51-41 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه ژنتیک و اصلاح نباتات، دانشکده کشاورزی دانشگاه آزاد اهواز، اهواز، ایران- دانشیار، اصلاح نباتات، دانشکده کشاورزی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران
چکیده:   (1978 مشاهده)
شوری یکی از مهمترین شرایط نامطلوب محیطی است که منجر به از بین رفتن بخشی از عملکرد گندم می ­شود. لذا شناخت ژن­هایی با بیان افتراقی و آگاهی از عملکرد آنها در گندم برای افزایش مقاومت به شوری ضروری است. برای تعیین ژن­های پاسخ دهنده به شوری، ترانسکریپتوم گندم شاهد و تحت تنش از طریق تکنیک cDNA-AFLP مورد ارزیابی قرار گرفت. بر مبنای مشاهدات ما، 31 قطعه حاصل از ترانسکریپت (TDF) با موفقیت توالی ­یابی شدند. بیشتر TDFهای شناخته ­شده به کمک جستجوی BLASTX، متعلق به ژن­های درگیر در گروه­ های مختلف عملکردی مانند انتقال، تجزیه پروتئین، تنظیم رونویسی، انتقال سیگنال، دفاع سلول، انرژی و متابولیسم بودند. تکنیک PCR  زمان­واقعی نشان داد که بیان چهار TDF کم شد درحالیکه بیان 18 TPF افزایش یافت. به طور کلی، این یافته­ ها درک ما از مکانیسم ­های سلولی دخیل در پاسخ گندم به شوری خاک را ارتقاء بخشید. علاوه بر این، شناسایی ژن­های جدید پاسخ ­دهنده به تنش شوری اطلاعات مفیدی برای کمک به بهبود تحمل گندم به این تنش را در مزرعه ارائه می­ دهد.
متن کامل [PDF 3212 kb]   (657 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1399/8/14 | ویرایش نهایی: 1401/3/4 | پذیرش: 1400/6/11 | انتشار: 1400/7/10

فهرست منابع
1. Akladious, S.A. and H.I. Mohamed. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 236: 244-250. [DOI:10.1016/j.scienta.2018.03.047]
2. FAO. 2015. World wheat, corn and rice. Oklahoma State University, FAO Statistics, Oklahoma.
3. Cushman, J.C. and H.J. Bohnert. 2000. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology, 3: 117-124. [DOI:10.1016/S1369-5266(99)00052-7]
4. Ghonaim, M.M., H.I. Mohamed and A.A.A. Omran. 2020. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genetic Resources and Crop Evolution, https://doi.org/10.1007/s10722-020-00981-w [DOI:10.1007/s10722-020-00981-w.]
5. Flowers, T.J. 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55: 307-319. [DOI:10.1093/jxb/erh003]
6. Goudarzi, M. and H. Pakniyat. 2008. Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. Journal of Agriculture and Social Research, 4(3): 35-38.
7. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. [DOI:10.1146/annurev.arplant.59.032607.092911]
8. Šamajova, O., O. Plihal, M. Al-Yousif, H. Hirt and J. Šamaj. 2013. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnology Advances, 31: 118-128. [DOI:10.1016/j.biotechadv.2011.12.002]
9. Munns, R., R.A. James and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 5: 1025-1043. [DOI:10.1093/jxb/erj100]
10. Roy, S.J., S. Negrao and M. Tester. 2014. Salt resistant crop plants. Current Opinion in Biotechnology, 26: 115-124. [DOI:10.1016/j.copbio.2013.12.004]
11. Liu, L., F.L. Huang, Q.X. Luo, H.Y. Pang and F.J. Meng. 2012. cDNA- AFLP analysis of the response of tetraploid black locust (Robinia pseudoacacia L.) to salt stress. African Journal of Biotechnology, 11(13): 3116-3124. [DOI:10.5897/AJB11.3358]
12. He, H., N. Yajing, C. Huawen, T. Xingjiao, X. Xinli, Y. Weilun and D. Silan. 2012. cDNA-AFLP analysis of salt-inducible genes expression in Chrysanthemum lavandulifolium under salt treatment. Journal of Plant Physiology, 169: 410-420. [DOI:10.1016/j.jplph.2011.09.013]
13. Kim, D.Y., M.J. Hong, J.H. Jang, Y.W. Seo. 2012. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in Brachypodium distachyon. Genes & Genomics, 34: 475-484. [DOI:10.1007/s13258-012-0067-z]
14. Wang, L., B. Zhou, L. Wu, B. Guo and T Jiang. 2011. Differentially expressed genes in Populus simonii × Populus nigra in response to NaCl stress using cDNA-AFLP. Plant Science, 180: 796-801. [DOI:10.1016/j.plantsci.2011.02.001]
15. Sabzehzari, M., S. Hoveidamanesh, M. Modarresi and V. Mohammadi. 2020. Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Ispaghul (Plantago ovata Forsk.). Genetic Resources and Crop Evolution, 67: 129-137. [DOI:10.1007/s10722-019-00846-x]
16. Sabzehzari, M., S. Hoveidamanesh, M. Modarresi and V. Mohammadi. 2019. Morphological, anatomical, physiological- and cytological studies in diploid and tetraploid plants of Plantago Psyllium. Plant Cell, Tissue and Organ Culture, 139: 131-137. [DOI:10.1007/s11240-019-01670-y]
17. - Mian, A.A., P. Senadheera and F.J.M. Maathuis. 2009. Improving crop salt tolerance: anion and cation transporters as genetic engineering targets. Plant Stress, 5: 64-72.
18. 18-Tang, R., H. Liu and Y. Yang. 2012. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Research, 22: 1650-1665. [DOI:10.1038/cr.2012.161]
19. Huang, Y.P., Y.W. Huang, I.H. Chen, L.L. Shenkwen, Y.H. Hsu and C.H. Tsai. 2017. Plasma membrane-associated cation-binding protein 1-like protein negatively regulates intercellular movement of BaMV. Journal of Experimental Botany, 68(17): 4765-4774. [DOI:10.1093/jxb/erx307]
20. Melloul M., D. Iraqi, M.E. Alaoui, G. Erba, S. Alaoui, M. Ibriz and E. Elfahime. 2014. Identification of Differentially Expressed Genes by cDNA-AFLP Technique in Response to Drought Stress in Triticum durum. Food Technology and Biotechnology, 52(4): 479--488. [DOI:10.17113/ftb.52.04.14.3701]
21. Berri, S., P. Abbruscato, F.R. Odile, A.C.M. Brasileiro, I. Fumasoni, K. Satoh, S. Kikuchi, L. Mizzi1, P. Morandini, M.E. Pè1 and P. Piffanelli. 2009. Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biology, 9: 120. [DOI:10.1186/1471-2229-9-120]
22. Kang, H., M. Zhanga, S. Zhou, Q. Guo, F. Chen, J. Wu and W. Wang. 2016. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. Plant Science, 248: 102-115 [DOI:10.1016/j.plantsci.2016.04.015]
23. Botha, A.M., K.J. Kunert and C.A. Cullis. 201 7. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association. Plant, cell & environment, 4: 1679-1690. [DOI:10.1111/pce.12998]
24. Zhang, X., S. Liu, T. Takano. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology, 68: 131-143 [DOI:10.1007/s11103-008-9357-x]
25. Safi, H., W. Saibi, M.M. Alaoui, A. Hmyene, K. Masmoudi, M. Hanin and F. Brini. 2015. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic. Plant Physiology and Biochemistry, 89: 64-75. [DOI:10.1016/j.plaphy.2015.02.008]
26. Santos, C., A. Pereira, S. Pereira and J. Teixeira. 2004. Regulation of glutamine synthetase expression in sunflower cells exposed to salt and osmotic stress. Scientia Horticulturae, 103: 101-111. [DOI:10.1016/j.scienta.2004.04.010]
27. Chen, H., P. Chu, Y. Zhou, Y. Li, J. Liu, Y. Ding, E.W.T. Tsang, L. Jiang, K. Wu and S. Huang. 2012. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis Journal of Experimental Botany, 63: 4107-4121 [DOI:10.1093/jxb/ers093]
28. Feria, A.B., N. Bosch, A. Sánchez, A.I. Nieto-Ingelmo, C. de la Osa, et al. 2016. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions. Planta, 244(4): 901-13. [DOI:10.1007/s00425-016-2556-9]
29. Kumánovics, A., O.S. Chen, L. Li, D. Bagley, et al. 2008. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. Journal of Biological Chemistry, 283(16): 10276-10286. [DOI:10.1074/jbc.M801160200]
30. Chen, H. and A. Melis. 2004. Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta, 220: 198-210. [DOI:10.1007/s00425-004-1331-5]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.