دوره 12، شماره 36 - ( زمستان 1399 1399 )                   جلد 12 شماره 36 صفحات 100-90 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (2529 مشاهده)
درک نحوه واکنش و پاسخ بیوشیمایی ارقام گندم زراعی، در ارتباط با تنش شوری، می­تواند به شناخت بیشتر سازوکارهای دفاعی و شناسایی شاخص­ ها و بیومارکرهای غربالگری تحمل به تنش شوری، در این گیاه استراتژیک و سایر گیاهان زراعی کمک نماید. به­ همین­ منظور، صفات بیوشیمیایی مرتبط با تحمل به شوری ارقام گندم زراعی، به ­صورت آزمایش فاکتوریل در قالب طرح پایه کاملاً تصادفی با سه تکرار، ارزیابی گردیدند. فاکتورهای آزمایش شامل ارقام گندم زراعی (رقم متحمل سارک ‌6 و رقم حساس چاینیز اسپرینگ) و سری­های زمانی نمونه­ برداری (شاهد یا کنترل، 6، 12، 24، 48، 72 و 96 ساعت) پس از اعمال تنش شوری بودند. تنش شوری با غلظت­ 250 میلی­ مولار کلرید سدیم بر روی گیاهچه ­های 10 روزه یکنواخت در مرحله دو برگی اعمال شده و نمونه ­برداری از بافت اندام هوایی و ریشه گیاهان صورت گرفت. صفات مورد بررسی شامل نسبت پتاسیم به سدیم (K+/Na+)، مالون­دی­ آلدهید (MDAسوپر اکسید دیسموتاز (SOD)، کاتالاز (CAT)، پراکسیداز (POX) و پلی فنل اکسیداز (PPO) بودند. نتایج تجزیه واریانس نشان­ دهنده معنی­ دار بودن اثرات رقم (به استثناء پراکسیداز)، اثرات زمان و برهم­کنش رقم و زمان در همه صفات مورد بررسی بود. نتایج اثرات متقابل رقم و زمان نشان داد اگرچه روند تغییرات صفات مورد بررسی، بسته به نوع رقم، بخش گیاهی مورد بررسی و زمان نمونه ­برداری متفاوت بود، اما در حالت کلی تنش شوری موجب کاهشK+/Na+، افزایش MDA  و همچنین افزایش فعالیت آنزیم­های دفاعی آنتی­ اکسیدانی در اندام هوایی و ریشه ارقام مورد بررسی نسبت به شرایط کنترل (زمان صفر) گردید. نتایج مقایسات گروهی ضمن تأیید کارآرایی و استیلای سیستم دفاعی آنتی­ اکسیدانی رقم متحمل سارک 6 در مقایسه با رقم حساس چاینز اسپرینگ، بر بهره ­مندی از بیومارکرهای K+/Na+،SOD  وCAT جهت غربالگری گندم زراعی تأکید کرد.
 
متن کامل [PDF 2125 kb]   (863 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1399/4/15 | ویرایش نهایی: 1399/11/21 | پذیرش: 1399/6/30 | انتشار: 1399/11/17

فهرست منابع
1. Adams, P., J.C. Thomas, D.M. Vernan, H.J. Bohnert and R.G. Jensen. 1992. Distinct cellular and organism responses to salt stress. Plant and Cell Physiology, 33(8): 1215-1223.
2. Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121-126. [DOI:10.1016/S0076-6879(84)05016-3]
3. Akbari Ghogdi, E., A. Izadi-Darbandi, A. Borzouei and A. Majdabadi. 2011. Evaluation of morphological changes in some wheat genotypes under salt stress. Journal of Water and Soil Science, 1(4): 71-83 (In Persian).
4. Alipour, H., H. Abdi, Y. Rahimi and M. R. Bihamta. 2019. Investigating grain yield and yield stability of wheat cultivars introduced in Iran over the last half century. Cereal Research, 9(2): 157-167 (In Persian).
5. Alscher, R.G., N. Erturk and L.S. Heath. 2002. Role of superoxide dismutases (SOD) in controlling oxidative stress in plant. Journal of Experimental Botany, 153: 1331-1341. [DOI:10.1093/jexbot/53.372.1331]
6. Amjad, H., B. Noreen, A. Javed and I. Nayyer. 2011. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiology and Biochemistry, 49: 178-185. [DOI:10.1016/j.plaphy.2010.11.009]
7. Arzani, A. and M. Salehi. 2013. Antioxidant activity and oxidative stress due to salinity in triticale and wheat lines in field condition. Journal of Plant Process and Function, 1(2): 39-50 (In Persian).
8. Asada, K. 2000. The water-water cycle as alternative photon and electron sinks. Hilo sophical Transactions of the Royal Society, 355: 1419-1431. [DOI:10.1098/rstb.2000.0703]
9. Ashraf, M. and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3-16. [DOI:10.1016/j.plantsci.2003.10.024]
10. Ashrafi, E., J. Razmjoo and M. Zahedi. 2016. The effect of salt stress on biochemical traits and relation with salt tolerant of alfalfa cultivars in field. Agronomy Journal (Pajouhesh and Sazandegi), 108: 43-56 (In Persian).
11. Attarzadeh, A., M. Movahhedi Dehnavi and M. Ghaffarian Hedesh. 2017. Comparison of the effect of water deficit and salt stresses on the growth, sodium and potassium content of wheat (Triticum aestivum L.). Cereal Research, 6(4): 465-476 (In Persian).
12. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287. [DOI:10.1016/0003-2697(71)90370-8]
13. Blokhin, O., E. Virolainen and K. Fagerstedt. 2003. Antioxidant oxidative damage and oxygen deprivation stress. Annals of Botany, 91: 179-194. [DOI:10.1093/aob/mcf118]
14. Borzouei, A., M. Kafi, H. Khazaei, A. Khorasani and A. Majdabad. 2011. The Study of Physiological Characteristics and Enzyme Superoxide Dismutas Activity in Two Wheat (Triticum aestivum L.) Cultivars at Different Growth Stages under Irrigation Water Salinity. Iranian Journal of Field Crops Research, 9(2): 190-201 (In Persian).
15. Chamaani, F., D. Habibi, N. Khodabandeh, M. Davoodifard and A. Asgharzadeh. 2012. Effects of salinity stress on growth and antioxidant enzyme activity of wheat inoculated with plant growth promoting bacteria and humic acid. Journal of Agronomy and Plant Breeding, 8(2): 39-55 (In Persian).
16. Chance, B. and A.C. Maehly. 1955. Assay of catalases and peroxidase. Methods in Enzymology, 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
17. Daneshbakhsh, B., A.H. Khoshghoftarmanesh, H. Shariatmadari and I. Cakmak. 2012. Effect of Zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiologiae Plantarum, 5(1): 1131-7.
18. Dastneshan, S. and M. Sabokdast. 2020. Evaluation of Tolerance Rate of Some Genotypes of Beans (Phaseolus Vulgaris L.) To Salinity Stress. Journal of Crop Breeding, 11(32):184-194 (In Persian). [DOI:10.29252/jcb.11.32.184]
19. Dhindsa, R.S. 1991. Drought stress, Enzymes of Glutation Metabolism, Oxidation Injury, and Protein Synthesis in Turtula ruralis. Plant Physiology, 95: 648-651. [DOI:10.1104/pp.95.2.648]
20. Dionisio-Sese, M.L. and S. Tobita. 1998. Antioxidant response of rice seedling to salinity stress. Plant Science, 135(1): 1-9. [DOI:10.1016/S0168-9452(98)00025-9]
21. Dolatabadian, A., M. Modares Sanavi and E. SHarifi. 2009. ffect of Ascorbic Acid Leaf Feeding on Antioxidant Enzymes Activity, Proline Accumulation and Lipid Peroxidation of Canola (Brassica napus L.) under Salt Stress Condition. Journal of Water and Soil Science, 13(47): 611-620 (In Persian).
22. Doraki, G., G. Zamani and M.H. Sayyari. 2016. Effect of Salt Stress on Physiological Traits and Antioxidant Enzymes Activity of Chickpea (Cicer arietinum L. cv. Azad). Iranian Journal of Field Crops Research, 14(3): 470-483 (In Persian).
23. Edreva, A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: A Sub molecular approach. Agriculture, Ecosystems and Environment, 106: 119-133. [DOI:10.1016/j.agee.2004.10.022]
24. Esfandiari, E., A. Javadi and M. Shokrpour. 2013. Evaluation of some of biochemical and physiological traits in wheat cultivars in response to salinity stress at seedling stage. Journal of Crops Improvement, 15(1): 27-38 (In Persian).
25. Faize, M., L. Faize, N. Koike, M. Ishizka and H. Ishii. 2004. Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology, 94: 604-612. [DOI:10.1094/PHYTO.2004.94.6.604]
26. FAO. 2019. Statistical data. Food and Agriculture Organization. From www.faostat.org.
27. Farhoudi, R. 2014. Investigation the salinity tension effect on growth and physiological characteristics of nine wheat cultivars at vegetative growth stage. Crop Physiology Journal, 5(20): 71-86 (In Persian).
28. Gholamia, M., M. Rahemi, B. Kholdebarinc and S. Rastegar. 2012. Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae, 148: 109-117. [DOI:10.1016/j.scienta.2012.09.005]
29. Gonzalez, E.M., B. de Ancos and M.P. Cano. 1999. Partial characterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry, 47: 4068-4072. [DOI:10.1021/jf981325q]
30. Heath, R.L. and I. Packer. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198. [DOI:10.1016/0003-9861(68)90654-1]
31. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2): 32.
32. Honty, K., M. Hevesi, M. Toth and E. Stefanovits Banyai. 2005. Some biochemical changes in pear fruit tissue induced by Erwinia aymlovora. Acta Biologica Szegediensi, 49(1-2): 127-129.
33. Jahani, S., M. Lahouti and M. Jahani. 2014. Investigation Na+- Ca2+ interaction on biomass and enzymes activity of peroxidase and polyphenol oxidase in leaf of barley (Hordeum vulgare L.). Crop Physiology Journal, 5(20): 15-24 (In Persian).
34. Khan, M.Y., A. Rauf, I. Makhdoom, A. Ahmad and S.M. Shah. 1992. Effect of saline sodic soils on mineral composition of eight wheats under field conditions. Sarhad Journal of Agriculture, 8: 477-486.
35. Kopyra, M. and E.A. Gwozdz. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry, 41: 1011-1017. [DOI:10.1016/j.plaphy.2003.09.003]
36. Liu, J., L.P. Tong, T.W. Shen, J. Li, L. Wu and Z.L. Yu. 2007. Impact of ion implantation on licorice growth and antioxidant activity under drought stress. Plasma Science and Technology, 9(3): 301-306. [DOI:10.1088/1009-0630/9/3/11]
37. Menogeuzzo, S., and F. Navari-Izzo. 1999. Anti-oxidative responses of shoot and roots of wheat to increasing NaCl concentrations. Journal Plant Physiology, 155: 274-280. [DOI:10.1016/S0176-1617(99)80019-4]
38. Mittler, R., S. Vanderauwera, M. Gollery and F.V. Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Science, 9: 490-498. [DOI:10.1016/j.tplants.2004.08.009]
39. Mohammadi, M. and H. Kazemi. 2002. Changes in peroxidase and polyphenol oxidase activities insusceptible and resistance wheat heads inoculated with fusarium graminearum and induced resistance. Plant Science, 162: 491-498. [DOI:10.1016/S0168-9452(01)00538-6]
40. Moharramnejad, S. and M. Valizadeh. 2015. Variation of Pigment Content and Antioxidant Enzyme Activites in PintoBean (Phaseolus vulgaris L.) Seedlings under Salt Stress. Journal of Crop Ecophysiology, 9(1): 153-166 (In Persian).
41. Mojarrad, M.A., M.R. Hassandokht, V. Abdossi, S.A. Tabatabaei and K. Larijani. 2018. Evaluation of some morphological and biochemical traits and antioxidant enzymes activity in Iranian native turnips under salinity stress caused by sodium chloride. Environmental Stresses in Crop Sciences, 11(24): 149-157 (In Persian).
42. Mudgal, V., N. Madaan and A. Mudgal. 2010. Biochemical Mechanisms of salt Tolerance in Plants: A Review. International Journal of Botany, 6: 136-143. [DOI:10.3923/ijb.2010.136.143]
43. Munns, R., R.A. Hare, R.A. James and G.J. Rebetzke. 2000. Genetic variation for improving the salt tolerance of durum wheat. Australian Journal of Agricultural Research, 51: 69-74. [DOI:10.1071/AR99057]
44. Nayyar, H. and D. Gupta. 2006. Differential sensitivity of C3and C4plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58: 106-113. [DOI:10.1016/j.envexpbot.2005.06.021]
45. Rahnama, A., K. Poustini, R. Tavakkol Afshari and A. Rasoulnia. 2011. Study of Antioxidant Enzymes and Lipids Peroxidation in Flag Leaf of Sensitive and Tolerant Wheat (Triticum aestivum L.) Cultivars to Salt Stress. Iranian Journal of Field Crop Sciences, 42(2): 359-371 (In Persian).
46. Rezvani Moghaddam, P. and A. Koocheki. 2001. Research history on salt affected lands of Iran: Present and future Prospects-Halophytic ecosystem. International Symposium on Prospects of Saline Agriculture in the GCC Countries, Dubai, UAE, 83-95.
47. Ryan, J., G. Estefan and A. Rashid. 2001. Soil and plant analysis laboratory manual (2th ed.). ICARDA, Syria, Scientific publishers.
48. Sadat Musavizadeh, Z., H. Najafi Zarini, S.H. Hashemi Petroudi and S.K. Kazemitabar. 2018. Assessment of Proline, Chlorophyll and Malondialdehyde in Sensitive and Tolerant Rice (Oryza sativa L.) Cultivars under Salt Stress. Journal of Crop Breeding, 10(25): 28-35 (In Persian). [DOI:10.29252/jcb.10.25.28]
49. Sairam, R.K. and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3): 407-421.
50. Sang, Y.K., J.H. Lim, M.R. Park, Y.J. Kim, T.P. Yong, W. Seo, K.G. Choi and S.J. Yun. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology, 38(2): 218-224. [DOI:10.5483/BMBRep.2005.38.2.218]
51. Siddiqi, E.H., M. Ashraf, F. Al-Qurainy and N.A. Akram. 2011. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Journal of the Science of Food and Agriculture, 91: 2785-2793. [DOI:10.1002/jsfa.4522]
52. Sirousmehr, A., J. Bardel and S. Mohammadi. 2015. Changes of Germination Properties, Photosynthetic Pigments and Antioxidant Enzymes Activity of Safflower as Affected by Drought and Salinity Stresses. Journal of Crop Ecophysiology, 8(4): 517-534 (In Persian).
53. Stewart, R.C.R. and D. Bewley. 1980. Lipid peroxidation associted with accelerated aging of soybean Axes. Plant physiology, 62: 245-248. [DOI:10.1104/pp.65.2.245]
54. Stuciffe, J. and D.A. Baker. 1981. Plants and mineral salts. Edward Arnold publisher, Southampton, 16-18.
55. Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in high plants. Annals of Botany, 91: 503-527. [DOI:10.1093/aob/mcg058]
56. Van Assche, F., C. Cardinaels and H. Clijsters. 1988. Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environmental Pollution, 52(2): 103-115. [DOI:10.1016/0269-7491(88)90084-X]
57. Wang, W.B., Y.H. Kim, H.S. Lee, K.Y. Kim, X.P. Deng and S.S. Kwak. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47: 570-577. [DOI:10.1016/j.plaphy.2009.02.009]
58. Weisany, W., Y. Sohrabi, G. Heidari, A. Siosemardeh and G.K. Ghassem. 2012. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics Journal, 5(2): 60-67.
59. Yildiz, M. and H. Terzi. 2013. Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. Journal of Agricultural Sciences, 19: 79-88. [DOI:10.1501/Tarimbil_0000001232]
60. Younesi, O. and A. Moradi. 2016. Effects of Arbuscular Mycorrhizal Fungus (AMF) on antioxidant enzyme activities in salt-stressed wheat. Journal of Crops Improvement, 18(1): 21-30 (In Persian).

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.