دوره 12، شماره 36 - ( زمستان 1399 1399 )                   جلد 12 شماره 36 صفحات 89-77 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Derakhshan A, Babaeizad V, Panjekeh N, Taheri A. (2020). Study of Biochemical and Molecular Changes of Iranian Rice Cultivars in Interaction with Bacterial Pathogen Xanthomonas oryzae pv. oryzae Causes Leaf Blight Disease. jcb. 12(36), 77-89. doi:10.52547/jcb.12.36.77
URL: http://jcb.sanru.ac.ir/article-1-1142-fa.html
درخشان احمد، سالاری محمد، بابایی زاد ولی اله، پنجه که ناصر، طاهری عبدالحسین. ارزیابی و مطالعه تغییرات بیوشیمیایی و مولکولی چند رقم برنج ایرانی در تعامل با بیمارگر باکتریایی Xanthomonas oryzae pv. oryzae عامل بیماری سوختگی برگ پژوهشنامه اصلاح گیاهان زراعی 1399; 12 (36) :89-77 10.52547/jcb.12.36.77

URL: http://jcb.sanru.ac.ir/article-1-1142-fa.html


دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (2382 مشاهده)
سوختگی باکتریایی برنج (Xoo) Xanthamonos oryzae pv. oryzae یکی از مخرب­ترین بیماریهای باکتریایی برنج در برخی از مناطق کشت برنج در دنیا بویژه مناطق گرمسیری آسیایی می­باشد. کارایی پایین روش هایی مدیریت بیماری بخصوص روش شیمیایی سبب شده تا بیشتر تحقیقات روی ارقام مقاوم و درک مکانیسم ­های مقاومت از طریق مطالعه تعاملات بیوشیمیایی و شناخت ژنهای مقاوم در مدیریت برنامه کاربردی قرار گیرد. این پژوهش با هدف ارزیابی مقاومت 24 رقم تجاری برنج ایرانی در مقابل باکتری عامل سوختگی و مطالعه برخی مکانسیم مقاومت در سطوح بیوشیمیایی و الگوی تظاهر ژن PAL به روش QRT-PCR انجام گرفت. نتایج ارزیابی گلخانه­ای نشان داد ارقام مختلف در توسعه طول لکه در برگ به عنوان مهمترین صفت ارزیابی بیماری اختلاف دارند. رقم تجاری خزر و نعمت در بالاترین سطح مقاومت و رقم طارم محلی و دیلمانی بیشترین حساسیت را بر اساس شاخص ارزیابی (مقاومت کمی) نسبت به این بیماری نشان دادند. ارزیابی بیوشیمیایی آنزیم ­های کاتالاز، گایکول پراکسیداز، سوپراکسید دیسموتاز و فنل کل در رقم مقاوم خزر و حساس طارم محلی نشان از روند فعالیت بالای این آنزیم­ها در رقم مقاوم در مقایسه با رقم حساس در ساعات اولیه پس از مایه زنی داشته که اختلاف بین رقم مقاوم و حساس در سطح یک درصد معنی دار می ­باشد. نرخ بیان ژن­ PAL نیز در رقم مقاوم خزر در ساعات اولیه پس از مایه ­زنی نسبت به رقم حساس بطور قابل ملاحظه­ای بالاتر بوده است. در مجموع به نظر می رسد القای ژن­ PAL و بدنبال آن افزایش تجمع آنزیم­های اکسیدانی و آنتی اکسیدانی در بروز مقاومت رقم خزر نسبت به رقم حساس طارم محلی بخشی از ساز وکار دفاعی برنج در مقابل باکتری Xoo می باشد.
متن کامل [PDF 1016 kb]   (787 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1399/3/27 | ویرایش نهایی: 1399/11/17 | پذیرش: 1399/7/13 | انتشار: 1399/11/17

فهرست منابع
1. Adhikari, T.B. and T.W. Mew. 1994. Resistance of rice to Xanthomonas oryzae pv. oryzae in Nepal. Plant Disease, 78(1): 64-67. [DOI:10.1094/PD-78-0064]
2. Akbari, M., R. Rezaei and H. Charegani. 2019. Evaluation of resistance of some rice cultivars to bacterial blight disease caused by to Xanthomonas oryzae pv. oryzae. Journal of Plant Protection (Agricultural Science), 24 (3): 59-70 (In Persian).
3. Ardales, E.Y., H. Leung, C.M. Vera Cruz, T.W. Mew, J.E. Leach and R. J. Nelson. 1996. Hierarchical analysis of spatial variation of the bacterial blight pathogen across diverse agroecosystems in philippines. Phytopathology, 86(3): 241-252. [DOI:10.1094/Phyto-86-241]
4. Barker, D. 2002. Method for Inoculating rice with Xanthomonas. Plant Pathology Laboratory, Iowa State University, 203 pp.
5. Choodamani, M.S., P. Hariprasad, M.K. Sateesh and S. Umesha. 2009. Involvement of catalase in bacterial blight disease development of rice caused by Xanthomonas oryzae pv. oryzae. International Journal of pest Management, 55(2): 121-127. [DOI:10.1080/09670870802601076]
6. Dazy, M., V. Jung, J.F. Férard and J.F. Masfaraud. 2008. Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere, 74(1): 57-63. [DOI:10.1016/j.chemosphere.2008.09.014]
7. Deb, S., M.K. Gupta, H.K. Patel and V. Sontir. 2019. Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein. Molecular Plant Pathology, 20(7): 976-989 [DOI:10.1111/mpp.12807]
8. Debona, D., F.A. Rodrigues, J.A. Rios and K.J.T. Nascimento. 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology, 102(12): 1121-1129. [DOI:10.1094/PHYTO-06-12-0125-R]
9. Farahani, A.S., S.M. Taghavi, A. Afsharifar and A. Niazi. 2016. Changes in expression of pathogenesis-related gene1, pathogenesis-related gene2, phenylalanine ammonia-lyase and catalase in tomato in response to Pectobacterium carotovorum subsp. carotovorum. Journal of Plant Pathology, 98(3): 525-530.
10. Fitzgerald, H.A., M.S. Chern, R. Navarre and P.C. Ronald. 2004. Overexpression of (At) NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell deathphenotype. Molecular Plant-Microbe Interactions, 17(2): 140-151. [DOI:10.1094/MPMI.2004.17.2.140]
11. Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59(2): 309-314. [DOI:10.1104/pp.59.2.309]
12. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
13. Goto, M. 1964. Kreseck and pale yellow leaf, systemic symptom of bacterial blight of rice caused by Xanthomonas oryzae (Uyeda & Ishiyama) Dowson. The Plant Disease Reporter, 48: 858-61.
14. Heydarinejad, A.M., V. Babaeizad and H.A. Rahimian. 2015. A study of the role of PR2 and PAL genes in rice plant resistance to Acidovorax avenae subsp. avenae. Journal of Agricultural Biotechnology, 7(4): 67-82. (In persion)
15. Horgana, K.J. and J.O. Henderson. 2015. Resistance genes of Oryza sativa for Protection Against Xanthomonas oryzae pv. oryzae, the causative agent of bacterial leaf blight. Journal of Student Research, 4(1): 12-17.‌ [DOI:10.47611/jsr.v4i1.202]
16. Huang, J., M. Gu, Z. Lai, B. Fan, K. Shi, Y.H. Zhou and Z. Chen. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 153(4):1526-1538. [DOI:10.1104/pp.110.157370]
17. Jiang, N., J. Yan, Y. Liang, Y. Shi, Z. He, Y. Wu, Q. Zeng, X. Liu and J. Peng. 2020. Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.) an Updated Review. Rice, 13(1): 1-12. [DOI:10.1186/s12284-019-0358-y]
18. Jockusch, H.1966. The role of host genes, temperature and polyphenol oxidase in the necrotization of TMV infected tobacco tissue. Jouurnal of Phytopatholology, 55: 185-192. [DOI:10.1111/j.1439-0434.1966.tb02222.x]
19. Khoshdaman, M., M. Niknejad Kazempour, A.S. Ebadi and F. Pedram. 2009. Identification of the causative agent of rice bacterial blight in farms of Gilan province, Journal of Plant Protection (Agricultural Sciences and Industries), 23(1): 50-57 (In Persian).
20. Khoshkdaman, M., A.A. Ebadi and D. Kahrizi. 2012. Evaluation of pathogencity and race classification of Xanthomonas oryzae pv. oryzae in guilan province-Iran. Agricultural Sciences, 3(4): 561-557. [DOI:10.4236/as.2012.34066]
21. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
22. Nino-Liu, D.O., P.C. Ronald and A.J. Bogdanove. 2006. Pathogen profile Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7(5): 303-324. [DOI:10.1111/j.1364-3703.2006.00344.x]
23. Oliveira, M. D. M., C.M R. Varanda and M.R.F. Félix. 2016. Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15: 152-158. [DOI:10.1016/j.phytol.2015.12.011]
24. Rostami, M., A. Qasemi, H. Rahimian and V. Khosravi. 2010. Identification of Rice Seed Disease Diseases in Mazandaran Province. Summary of papers of the 19th Congress of Plant Protection. University of Tehran, page 420 pp (In Persian).
25. Sahebi, M., S. Tarighi, P. Taheri and M. Goldani. 2015. Diversity of Xanthomonas oryzae pv. oryzae Bacterial blight of rice. Journal of Plant Protection (Agricultural Sciences and Industries), 29(1): 23-31. (In Persian). [DOI:10.1007/s11274-015-1914-2]
26. Sairam, R.K., K. Veerabhadra Rao and G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Journal of Plant Science, 163: 1037-1046 [DOI:10.1016/S0168-9452(02)00278-9]
27. Sayari, M., V. Babaeizad, M.A.T. Ghanbari and H.Rahimian. 2014. Expression of the pathogenesis related proteins, NH-1, PAL, and lipoxygenase in the Iranian Tarom and Khazar rice cultivars, in reaction to Rhizoctonia solani-the causal agent of rice sheath blight. Journal of Plant Protection Research, 54(1): 36-43. [DOI:10.2478/jppr-2014-0006]
28. Schaad, N.W., J.B. Joneas and C. Chun. 2001. Laboratory Guid for identification of plant pathogenic bacteria. (Third edition) St Paul, Minnestota, APS press, 373 pp.
29. Schwessinger, B. and P.C. Ronald. 2012. Plant innate immunity: perception of conserved microbial signatures. Annual Review of Plant Biology, 63: 451-482 [DOI:10.1146/annurev-arplant-042811-105518]
30. Seevers, P.M. and J.M. Daly. 1970. Studies on wheat stem rust resistance control at sr6 locus. 1-the role of phenolic compounds. Phytopathology, 6: 1322-1328. [DOI:10.1094/Phyto-60-1322]
31. Sharma, P., A.B. Jha, R.S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1: 1-26. [DOI:10.1155/2012/217037]
32. Shine, M. B., J.W. Yang, M. El‐Habbak, P. Nagyabhyru, D.Q. Fu, D.Navarre and A. Kachroo. 2016. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212(3): 627-636. [DOI:10.1111/nph.14078]
33. Sodhi, M., Y. Vikal, M.L.C. George, G.S. Bala, G.S. Mangat, M. Garg, J.S. Sidhu, and H.S. Dhaliwal. 2003. DNA fingerprinting and virulence analysis of Xanthomonas oryzae pv. oryzae isolates from Punjab, northern India. Euphytica, 130(1): 107-115. [DOI:10.1023/A:1022329024651]
34. Sofo, A., A. Scopa, M. Nuzzaci, A. Vitti. 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6): 13561-13578. [DOI:10.3390/ijms160613561]
35. Solekha, R., F.A. Susanto, T. Joko, T.R. Nuringtyas and Y.A. Purwestri. 2019. Phenylalanine ammonia lyase (PAL) contributes to the resistance of black rice against Xanthomonas oryzae pv. oryzae. Journal of Plant Pathology, 102(2): 367-367. [DOI:10.1007/s42161-019-00454-9]
36. Stotz, H.U., J.G. Thomson, Y. Wang. 2009. Plant defensins Defense, development and application. Plant Signaling and Behavior, 4(11): 1010-1012. [DOI:10.4161/psb.4.11.9755]
37. Tang, W. and J.R. Newton. 2005. Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus scorba L.) zygotic embryos. Plant Physiolgy and Biochemistry, 43: 760-769. [DOI:10.1016/j.plaphy.2005.05.008]
38. Thakur, M. and B.S. Sohal. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry. [DOI:10.1155/2013/762412]
39. Tonnessen, B.W., P. Manosalva, J.M. Lang, M. Baraoidan, A. Bordeos, R. Mauleon and J.E. Leach. 2015. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Molecular Biology, 87(3): 273-286. [DOI:10.1007/s11103-014-0275-9]
40. Van Loon, L., M. Rep and C. Pieterse. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44: 135-162. [DOI:10.1146/annurev.phyto.44.070505.143425]
41. Venturi, V. and C. Fuqua. 2013. Chemical signaling between plants and plant-pathogenic bacteria. Annual Review of Phytopathology, 51: 17-37. [DOI:10.1146/annurev-phyto-082712-102239]
42. White, F.F. and B. Yang. 2009. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiology, 150(4): 1677-1686. [DOI:10.1104/pp.109.139360]
43. Wildermuth, M.C., J. Dewdney, G. Wu and F.M. Ausubel. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863): 562-565. [DOI:10.1038/35107108]
44. Wu, W., X. Wan, F. Shah, S. Fahad and J. Huang. 2014. The role of antioxidant enzymes in adaptive responses to sheath blight infestation under different fertilization rates and hill densities. The Scientific World Journal. [DOI:10.1155/2014/502134]
45. Yu, C., N. Wang, M. Wu, F. Tian, H. Chen, F. Yang and C. He. 2016. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae. BMC Microbiology, 16(1): 269. [DOI:10.1186/s12866-016-0887-0]
46. Yuan, Y., S. Zhong, Q. Li, Z. Zhu, Y. Lou, L. Wang, J. Wang, M. Wang, Q. Li, D. Yang and Z. He. 2007. Functional analysis of rice NPR1‐like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 5(2): 313-324. [DOI:10.1111/j.1467-7652.2007.00243.x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb