Volume 9, Issue 24 (3-2018)                   jcb 2018, 9(24): 40-49 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bandehagh A, Toorchi M, Farajzadeh D, Dorani Uliaie E, Shokri Gharelo R, Malekpour A. Evaluation of the Proteome Profile Changes of Canola Leaf Inoculated With Pseudomonas Florescence FY32 under Salinity Stress. jcb. 2018; 9 (24) :40-49
URL: http://jcb.sanru.ac.ir/article-1-933-en.html
Department of Breeding and Plant Biotechnology, Faculty of Agriculture, University of Tabriz
Abstract:   (1498 Views)
Plant growth-promoting bacteria enhance plant performance under stressful conditions using various mechanisms. This study was aimed to investigate the effects of Pseudomonas florescence FY32 on growth characteristics and to identify proteins involved in plant-bacterium interaction under salt stress. The results indicated that under salt stress (150 and 300 mM NaCl), plants inoculated with bacteria compared to non-inoculated plants possess better growth characteristics. Study of proteome pattern changes in leaf indicated that of 170 reproducible spots, 20 spots had differentially expression changes. Differentially expressed proteins were categorized into six functional groups, including energy metabolism (25%), antioxidants (20%), gene expression regulation (20%), photosynthesis (15%) and membrane proteins (1%).  All of these proteins underwent same changes either in uninoculated or inoculated plants under salt stress, except Photosystem II CP47 (spot no. 1), Photosystem II CP43 (spot no. 2), and NAD(P)H-quinone oxidoreductase (spot no. 6) which had more expression level in inoculated plants than those non-inoculated plants. In general, results indicated that inoculation of Sarigol with the bacterium could improve its growth under salt stress. 
Full-Text [PDF 552 kb]   (503 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2018/03/10 | Revised: 2019/04/14 | Accepted: 2018/03/10 | Published: 2018/03/10

1. Aki, F., S.K. Kazemitabbar, S.H. Hashemi and H. Najafi Zarini. 2016. Evaluated of Effect of Cold Stress on Proline, Malondialdehyde and Photosynthetic Pigments in Seedling Stage of Sesame (Sesamum indicum L.) Genotypes. Journal of Crop Breeding, 8: 166-175 (In Persian). [DOI:10.29252/jcb.8.18.166]
2. Anjum, S.A., X.Y. Xie, L.C. Wang, M.F. Saleem, C. Man and W. Lei. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6: 2026-2032.
3. Ashraf, M. and T. McNeilly. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23: 157-174. [DOI:10.1080/07352680490433286]
4. Banaei-Asl, F., A. Bandehagh, E.D. Uliaei, D. Farajzadeh, K. Sakata, G. Mustafa, and S. Komatsu. 2015. Proteomic analysis of canola root inoculated with bacteria under salt stress. Journal of proteomics, 124: 88-111. [DOI:10.1016/j.jprot.2015.04.009]
5. Banaei-Asl, F., D. Farajzadeh, A. Bandehagh and S. Komatsu. 2016. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864: 1222-1236. [DOI:10.1016/j.bbapap.2016.04.013]
6. Bandehagh, A., G.H. Salekdeh, M. Toorchi, A. Mohammadi and S. Komatsu. 2011. Comparative proteomic analysis of canola leaves under salinity stress. Proteomics, 11: 1965-1975. [DOI:10.1002/pmic.201000564]
7. Bandeh-Hagh, A., M. Toorchi, A. Mohammadi, N. Chaparzadeh, G.H. Salekdeh, and H. Kazemnia. 2008. Growth and osmotic adjustment of canola genotypes in response to salinity. Journal of Food Agriculture and Environment, 6: 201-210.
8. Baxter, A., R. Mittler and N. Suzuki. 2014. ROS as key players in plant stress signaling. Journal of experimental botany, 65: 1229-1240. [DOI:10.1093/jxb/ert375]
9. Bhattacharyya, P. and D. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327-1350. [DOI:10.1007/s11274-011-0979-9]
10. Blankenship, R.E. 2013. Molecular mechanisms of photosynthesis. John Wiley & Sons, US, 321.
11. Bradford, J. 1986. Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods. Soil Science Society of America, US, 478.
12. Bricker, T.M. and L.K. Frankel. 2002. The structure and function of CP47 and CP43 in photosystem II. Photosynthesis research, 72: 131-146. [DOI:10.1023/A:1016128715865]
13. Chaves, M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany, 103: 551-560. [DOI:10.1093/aob/mcn125]
14. Farajzadeh, D., N. Aliasgharzad, N.S. Bashir and B. Yakhchali. 2010. Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Current microbiology, 61: 37-43. [DOI:10.1007/s00284-009-9573-x]
15. Fasciglione, G., E.M. Casanovas, V. Quillehauquy, A.K. Yommi, M.G. Goñi, S.I. Roura, and C.A. Barassi. 2015. Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae, 195: 154-162. [DOI:10.1016/j.scienta.2015.09.015]
16. Fathi Saad Abadi, M., G. Ranjbar, M. Zangi, S.K. Kazemitabar and H. Najafi Zarini. 2017. Evaluation Salt Tolerance in Earliness Genotypes of Cotton (Gossypium hirsutum) at Seedling Stage. Journal of Crop Breeding, 9: 109-116 (In Persian).
17. Fu, J. and B. Huang. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45: 105-114. [DOI:10.1016/S0098-8472(00)00084-8]
18. Gharelo Shokri, R., A. Bandehagh, D. Farajzadeh and M. Tourchi. 2016. Canola 2-dimensional proteom profile under osmotic stress and inoculation with Pseudomonas fluorescens FY32. Plant Cell Biotechnology and Molecular Biology 17: 257-266.
19. Giardi, M.T., J. Masojídek and D. Godde. 1997. Effects of abiotic stresses on the turnover of the D1 reaction centre II protein. Physiologia Plantarum, 101: 635-642. [DOI:10.1111/j.1399-3054.1997.tb01048.x]
20. Hidri, R., J. Barea, O.M.B. Mahmoud, C. Abdelly and R. Azcón. 2016. Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. Journal of Plant Physiology, 201: 28-41. [DOI:10.1016/j.jplph.2016.06.013]
21. Maere, S., K. Heymans and M. Kuiper. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21: 3448-3449. [DOI:10.1093/bioinformatics/bti551]
22. McFarland, J. 1907. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association, 49: 1176-1178. [DOI:10.1001/jama.1907.25320140022001f]
23. Mishra, N.C. 2011. Introduction to proteomics: principles and applications. John Wiley & Sons, US, 200.
24. Mohammadi, P.P., A. Moieni and S. Komatsu. 2012. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 43: 2137-2152. [DOI:10.1007/s00726-012-1299-6]
25. O'brien, R.D. 2008. Fats and oils: formulating and processing for applications. CRC press, US, 680. [DOI:10.1201/9781420061673]
26. Penrose, D.M. and B.R. Glick. 2003. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia plantarum, 118: 10-15. [DOI:10.1034/j.1399-3054.2003.00086.x]
27. Purty, R.S., G. Kumar, S.L. Singla-Pareek, and A. Pareek. 2008. Towards salinity tolerance in Brassica: an overview. Physiology and Molecular Biology of Plants, 14: 39-49. [DOI:10.1007/s12298-008-0004-4]
28. Richmond, G.S. and T.K. Smith. 2011. Phospholipases A1. International journal of molecular sciences, 12: 588-612. [DOI:10.3390/ijms12010588]
29. Sagi, M. and R. Fluhr. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant physiology, 141: 336-340. [DOI:10.1104/pp.106.078089]
30. Samancioglu, A., E. Yildirim, M. Turan, R. Kotan, U. Sahin and R. Kul. 2016. Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of Cabbage Seedlings by Plant Growth Promoting Rhizobacteria. International Journal of Agriculture & Biology, 18: 948-956. [DOI:10.17957/IJAB/15.0195]
31. Sengupta, S. and A.L. Majumder. 2009. Insight into the salt tolerance factors of wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta, 229: 911-929. [DOI:10.1007/s00425-008-0878-y]
32. Sharma, P., A.B. Jha, R.S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 1-26. [DOI:10.1155/2012/217037]
33. Shih, P.H., C.T. Yeh and G.C. Yen. 2007. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. Journal of agricultural and food chemistry, 55: 9427-9435. [DOI:10.1021/jf071933i]
34. Siegel, D., D.L. Gustafson, D.L. Dehn, J.Y. Han, P. Boonchoong, L.J. Berliner and D. Ross. 2004. NAD (P) H: quinone oxidoreductase 1: role as a superoxide scavenger. Molecular pharmacology, 65: 1238-1247. [DOI:10.1124/mol.65.5.1238]
35. Tiwari, S., C. Lata, P.S. Chauhan and C.S. Nautiyal. 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99: 108-117. [DOI:10.1016/j.plaphy.2015.11.001]
36. Van Loon, L.C., B.P. Geraats, and H.J. Linthorst. 2006. Ethylene as a modulator of disease resistance in plants. Trends in plant science, 11: 184-191. [DOI:10.1016/j.tplants.2006.02.005]
37. Wahid, A. and E. Rasul. 2005. Handbook of photosynthesis. CRC Press US, 952.
38. Weller, D.M., J.M. Raaijmakers, B.B.M. Gardener and L.S. Thomashow. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens 1. Annual review of phytopathology, 40: 309-348. [DOI:10.1146/annurev.phyto.40.030402.110010]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb