Volume 9, Issue 24 (3-2018)                   jcb 2018, 9(24): 1-9 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdavi Mashaki K, Nasrollahnezhad Ghomi A A, Thudi M, Zaynali Nezhad K, Yamchi A, Soltanloo H et al . Transcriptome Analysis of Iranian Local Chickpea in Response to Drought Stress. jcb. 2018; 9 (24) :1-9
URL: http://jcb.sanru.ac.ir/article-1-925-en.html
Gorgan University of Agricultural Sciences and Natural Resources
Abstract:   (1646 Views)
Chickpea (Cicer arietinum L.) is one of the most important legumes for human food and plays major roles in soil productivity. This crop is subjected to terminal drought in arid and semi-arid regions such as Iran. Identification of drought-induced genes is necessary not only for understanding molecular mechanisms of drought tolerance, but also is important to develop tolerant crops. In present study, transcriptome profiling of Iranian local kabuli chickpea (Bivanij cultivar) was investigated under drought stress at early flowering stage at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). Illumina HiSeq2500 was applied for sequencing the root and the shoot samples under control and stress conditions. A total of 891 and 507 differentially expressed genes (DEGs) were identified in response to the drought stress in the root and the shoot, respectively. Likewise, 760, 376 and 131 DEGs were detected specifically in the root, the shoot and common in both organs, respectively. Gene ontology (GO) analysis revealed several GO terms associated with stress, including response to stimulus and signaling among the DEGs in response to the drought stress. Moreover, major metabolic pathways such as ABA and proline biosynthesis, biosynthesis of secondary metabolites such as flavonoids and phenylpropanoids, carbohydrates and energy metabolisms were identified by KEGG pathway analysis. These findings showed that more drought-related genes and pathways were induced in the root compared to the shoot. Several DEGs particularly those which were functioned as transcription factors (TFs) related to drought responsive genes, can be used for future researches and improving drought tolerant cultivars.
Full-Text [PDF 1387 kb]   (1176 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2018/03/10 | Revised: 2019/04/14 | Accepted: 2018/03/10 | Published: 2018/03/10

1. Agarwal, P. and B. Jha. 2010. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum, 54: 201-212. [DOI:10.1007/s10535-010-0038-7]
2. Ahmad, F., P. Gaur and J. Croser, 2005. Chickpea (Cicer arietinum L.). Genetic Resources, Chromosome Engineering and Crop Improvement-Grain Legumes, 1: 185-214. [DOI:10.1201/9780203489284.ch7]
3. Ashraf, M. and M. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216. [DOI:10.1016/j.envexpbot.2005.12.006]
4. Bhargava, S. and K. Sawant, 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132: 21-32. [DOI:10.1111/pbr.12004]
5. Bohnert, H.J., D.E. Nelson and R.G. Jensen. 1995. Adaptations to environmental stresses. The Plant Cell, 7: 1099. [DOI:10.2307/3870060]
6. Chaves, M., J. Flexas and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551-560. [DOI:10.1093/aob/mcn125]
7. Delauney, A.J. and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4: 215-223. [DOI:10.1046/j.1365-313X.1993.04020215.x]
8. Deokar, A.A., V. Kondawar, P.K. Jain, S.M. Karuppayil and N.L. Raju. 2011. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biology, 11: 70. [DOI:10.1186/1471-2229-11-70]
9. FAOSTAT 2013. FAOSTAT database. http://faostat3.fao.org/faostat- gateway/go/to/download/Q/QC/E.
10. Farooq, M., N. Gogoi, S. Barthakur, B. Baroowa and N. Bharadwaj. 2016. Drought Stress in Grain Legumes during Reproduction and Grain Filling. Journal of Agronomy and Crop Science, 203(2): 81-102. [DOI:10.1111/jac.12169]
11. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita and S. Basra. 2009. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, Springer, pp: 153-188. [DOI:10.1007/978-90-481-2666-8_12]
12. Farshadfar, E. and J. Javadinia. 2011. Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvment Journal, 27(1): 517-537 (In persian).
13. Finkelstein, R.R. and C.D. Rock. 2002. Abscisic acid biosynthesis and response. The Arabidopsis Book: e0058. [DOI:10.1199/tab.0058]
14. Garg, R., A. Bhattacharjee and M. Jain. 2015. Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Molecular Biology Reporter, 33: 388-400. [DOI:10.1007/s11105-014-0753-x]
15. Garg, R., R. Shankar, B. Thakkar, H. Kudapa and L. Krishnamurthy. 2016. Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6: 19228. [DOI:10.1038/srep19228]
16. Heidari, P. and H. Najafi Zarrini. 2016. Classification and gene expression analysis of bzip family in tomato root under sub-optimal temperature. Journal of Crop Breeding, 8 (17): 17-23 (In Persian). [DOI:10.18869/acadpub.jcb.8.17.23]
17. Hiremath, P.J., A. Farmer, S.B. Cannon and J. Woodward. 2011. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal, 9: 922-931. [DOI:10.1111/j.1467-7652.2011.00625.x]
18. Jain, D. and D. Chattopadhyay. 2010. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biology, 10(1): 24. [DOI:10.1186/1471-2229-10-24]
19. Jayashree, B., H.K. Buhariwalla, S. Shinde and J.H. Crouch. 2005. A legume genomics resource: the chickpea root expressed sequence tag database. Electronic Journal of Biotechnology, 8: 8-13. [DOI:10.2225/vol8-issue2-fulltext-8]
20. Joshi, R., S.H. Wani, B. Singh, A. Bohra and Z.A. Dar. 2016. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Frontiers in Plant Science, 7: 1029. [DOI:10.3389/fpls.2016.01029]
21. Kashiwagi, J., L. Krishnamurthy, J.H. Crouch and R. Serraj, 2006. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research, 95: 171-181. [DOI:10.1016/j.fcr.2005.02.012]
22. Mansourifar, C., M. Shaban, M. Ghobadi and A.R. Ajirlu. 2011. Effect of drought stress and N fertilizer on yield, yield components and grain storage proteins in chickpea (Cicer arietinum L.) cultivars. African Journal of Plant Science, 5: 634-642.
23. Mantri, N.L., R. Ford, T.E. Coram and E.C. Pang. 2007. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics, 8: 1. [DOI:10.1186/1471-2164-8-303]
24. McAdam, S.A. and T.J. Brodribb. 2015. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiology, 167: 833-843. [DOI:10.1104/pp.114.252940]
25. Meena, M.K., S. Ghawana, V. Dwivedi, A. Roy and D. Chattopadhyay. 2015. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. Frontiers in Plant Science, 6(683): 1-11. [DOI:10.3389/fpls.2015.00683]
26. Molina, C., B. Rotter, R. Horres, S.M. Udupa and B. Besser. 2008. SuperSAGE: the drought stress responsive transcriptome of chickpea roots. BMC Ggenomics, 9(1): 553. [DOI:10.1186/1471-2164-9-553]
27. Moucheshi, S., B. Heidari and E. Farshadfar. 2009. Evaluation of stress indices for drought tolerance screening of chickpea (Cicer arietinum L.). Journal of Crop Breeding, 1(4): 49-64 (In Persian).
28. Pourcel, L., J.M. Routaboul, V. Cheynier, L. Lepiniec and I. Debeaujon. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12: 29-36. [DOI:10.1016/j.tplants.2006.11.006]
29. Ruan, Y.L., Y. Jin, Y.J. Yang, G.J. Li and J.S. Boyer. 2010. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Molecular Plant, 3: 942-955. [DOI:10.1093/mp/ssq044]
30. Ruggiero, B., H. Koiwa, Y. Manabe, T.M. Quist and G. Inan. 2004. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiology, 136: 3134-3147. [DOI:10.1104/pp.104.046169]
31. Sah, S.K., K.R. Reddy and J. Li. 2016. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7(571): 1-26. [DOI:10.3389/fpls.2016.00571]
32. Shao, H.B., L.Y. Chu, Z.H. Lu and C.M. Kang. 2008. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. International Journal of Biological Sciences, 4(1): 8. [DOI:10.7150/ijbs.4.8]
33. Varshney, R.K., P.J. Hiremath, P. Lekha, J. Kashiwagi and J. Balaji. 2009. A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics, 10: 1. [DOI:10.1186/1471-2164-10-523]
34. Varshney, R.K., C. Song, R.K. Saxena, S. Azam and S. Yu. 2013. Draft genome sequence of chickpea (Cicer arietinum L.) provides a resource for trait improvement. Nature biotechnology, 31: 240-246. [DOI:10.1038/nbt.2491]
35. Wang, X., Y. Liu, Y. Jia, H. Gu and H. Ma. 2012. Transcriptional responses to drought stress in root and leaf of chickpea seedling. Molecular Biology Reports, 39: 8147-8158. [DOI:10.1007/s11033-012-1662-4]
36. Wang, H., H. Wang, H. Shao and X. Tang. 2016. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Frontiers in Plant Science, 7(67):1-13. [DOI:10.3389/fpls.2016.00067]
37. Wood, J., E. Knights and M. Choct. 2011. Morphology of chickpea seeds (Cicer arietinum L.): comparison of desi and kabuli types. International Journal of Plant Sciences, 172: 632-643. [DOI:10.1086/659456]
38. Yamaguchi-Shinozaki, K. and K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57: 781-803. [DOI:10.1146/annurev.arplant.57.032905.105444]
39. Yaqoob, M., P.A. Hollington, A.B. Mahar and Z.A. Gurmani. 2013. Yield performance and responses studies of chickpea (Cicer arietinum L.) genotypes under drought stress. Emirates Journal of Food and Agriculture, 25(2): 117. [DOI:10.9755/ejfa.v25i2.10655]
40. Yu, X., Y. Liu, S. Wang, Y. Tao and Z. Wang. 2016. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 35: 613-627. [DOI:10.1007/s00299-015-1907-5]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb