دوره 12، شماره 34 - ( تابستان 1399 )                   جلد 12 شماره 34 صفحات 35-26 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
چکیده:   (2585 مشاهده)
   تنش شوری یکی از مهمترین تنش­های غیرزنده­ای است که می ­تواند عملکرد گندم­های زراعی را تحت تاثیر قرار دهد. بررسی مکانیسم­ های تحمل به تنش شوری در گیاهان زراعی و نیز اجداد وحشی آنها حائز اهمیت است. هدف از این پروژه بررسی لکه­ های پروتئینی پاسخ دهنده به تنش شوری در جمعیت متحمل بود. در این پروژه پنج جمعیت گندم دیپلوئید بوئتیکوم (A1، A10، B3، B4 و C5) از مناطق مختلف در محیط گلخانه و به­ صورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار کشت شدند. شوری در مرحله سه­ برگچه­ ای در دو سطح صفر و 150 میلی­ مولار اعمال گردید. سپس صفات ارتفاع قسمت هوایی و ریشه، وزن تر و خشک قسمت هوایی، میزان کلروفیل a، b، کل و نیز کاروتنوئیدها و مقدار پروتئین کل اندازه­گیری شدند. پروتئین کل با استفاده از روش TCA/استون استخراج شد. پروتئین‌ها در بعد اول بر اساس نقطه ایزوالکتریک و با استفاده از نوارهای IPG با pH 4-7 و سپس در بعد دوم بر اساس وزن مولکولی و با استفاده از SDS-PAGE جداسازی گردیدند. نتایج تجزیه داده­های فیزیولوژیک نشان داد که برای 3 صفت وزن تر و خشک اندام هوایی و میزان پروتئین کل برهمکنش جمعیت در شوری معنی­دار گردید که برای دو صفت وزن تر و پروتئین کل جمعیت B4 به­ترتیب در شرایط نرمال و تنش شوری بالاترین میانگین را به خود اختصاص داد. آنالیز ژل­های حاصل از الکتروفورز دو بعدی باعث شناسایی 205 لکه تکرارپذیر گردید. از این تعداد، 7 لکه نسبت به شاهد افزایش بیان و 7 لکه نسبت به شاهد کاهش بیان نشان دادند. پروتئین­ های شناسایی ­شده جزو پروتئین­ های دخیل در دیواره سلولی، فتوسنتز، متابولیسم انرژی، پروتئین­ های مرتبط با کروماتین، چپرون­ ها، پروتئولیتیک­ ها، پروتئین­ های دخیل در حذف گونه ­های فعال اکسیژن، دخیل در تعمیر پروتئین­ های آسیب­ دیده و دخیل در انتقال پیام هستند. از نتایج حاصل  از این تحقیق
می­توان در جهت بهبود اصلاح ارقام زراعی گندم بهره برد.
متن کامل [PDF 1406 kb]   (683 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات مولكولي
دریافت: 1396/12/7 | ویرایش نهایی: 1399/10/7 | پذیرش: 1398/6/2 | انتشار: 1399/4/10

فهرست منابع
1. Abedini, M. 2016. Physiological responses of wheat plant to salinity under different concentrations of Zn. Acta Biologica Szegediensis, 60(1): 9-16.
2. Alavi, N.S., M. Maleki, S. Pourseiedi, M. Rahimi, A. Baghizadeh, A. Riahi Medvar and A.R. Rasoulnia. 2016. Investigation of Salinity effect on leaf proteome pattern of Triticum boeoticum. Agricultural biotechnology, 7(1): 61-69.
3. Alipoor Ghorbani, S., A. Bandehhagh, M. Toorchi and R. Shokri Gharelo. 2018. Proteomic profiling analysis of rapeseed under salinity stress. Journal of plant research, 31(2): 422-433.
4. Arnon, A.N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112- 121.
5. Ashraf, M.P.J.C. and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant science, 166(1): 3-16. [DOI:10.1016/j.plantsci.2003.10.024]
6. Bloom, H., H. Beier, H.S. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8: 93-99. [DOI:10.1002/elps.1150080203]
7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254. [DOI:10.1016/0003-2697(76)90527-3]
8. Cruz, J.A., T.J. Avenson, A. Kanazawa, K. Takizawa, G.E. Edwards and D.M. Kramer. 2004. Plasticity in light reactions of photosynthesis for energy production and photoprotection. Journal of Experimental Botany, 56(411): 395-406. [DOI:10.1093/jxb/eri022]
9. Damerval, C., D. De Vienne, M. Zivy and H. Thiellement. 1986. Technical improvements in two‐dimensional electrophoresis increase the level of genetic variation detected in wheat‐seedling proteins. Electrophoresis, 7(1): 52-54. [DOI:10.1002/elps.1150070108]
10. Gao, J., Y. Zhu, W. Zhou, J. Molinier, A. Dong and W.H. Shen. 2012. NAP1 family histone chaperones are required for somatic homologous recombination in Arabidopsis. The Plant Cell, 24(4): 1437-1447. [DOI:10.1105/tpc.112.096792]
11. Görg, A., W. Postel, A. Domscheit and S. Günther. 1988. Two‐dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): Method, reproducibility and genetic aspects. Electrophoresis, 9(11): 681-692. [DOI:10.1002/elps.1150091103]
12. Hurkman, W.J., C.S. Fornari and C.K. Tanaka. 1989. A comparison of the effect of salt on polypeptide and translatable mRNA in roots of a salt tolerant and salt sensitive cultivar of barley. Plant Physiology, 90: 1444-1456. [DOI:10.1104/pp.90.4.1444]
13. Jahngen-Hodge, J., M.S. Obin, X. Gong, F. Shang, T.R. Nowell, J. Gong, H. Abasi, J. Blumberg and A. Taylor. 1997. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. Journal of Biological Chemistry, 272(45): 28218-28226. [DOI:10.1074/jbc.272.45.28218]
14. Jerzmanowski, A., M. Przewłoka and K.D. Grasser. 2000. Linker Histones and HMG1 proteins of higher plants. Plant Biology, 2: 586-597. [DOI:10.1055/s-2000-16648]
15. Kamali, N., S. Navabpour, H. Soltanloo and M. Kalate. 2015. Changes in Metallothionein Gene Expression, Chlorophyll Content and Some Agronomic Traits in Response to Salt Stress inWheat. Journal of Crop Breeding, 7(15): 57-67 (In Persian).
16. Li, J., K.A. Lease, F.E. Tax and J.C. Walker. 2001. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 98(10): 5916-5921. [DOI:10.1073/pnas.091065998]
17. Majoul, T., E. Bancel, E. Triboï, J. Ben Hamida and G. Branlard. 2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat‐responsive proteins from non‐prolamins fraction. Proteomics, 4(2): 505-513. [DOI:10.1002/pmic.200300570]
18. Maleki, M., M.R. Naghavi, H. Alizadeh, K. Poostini and C.A. Mishani. 2014. Comparison of protein changes in the leaves of two bread wheat cultivars with different sensitivity under salt stress. Annual Research and Review in Biology, 4(11): 1784. [DOI:10.9734/ARRB/2014/7795]
19. Malaki, M., M.R. Naghavi, H. Alizadeh, P. Potki, M. Kazemi, S.M. Pirseyedi, M. Mardi and S.M. Fakhre-Tabatabaei. 2006. Study of genetic variation in wild diploid wheat (Triticum boeoticum) from Iran using AFLP markers. Iranian Journal of Biotechnology, 4(4): 269-274.
20. Mudgett, M.B. and S. Clarke. 1994. Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat. Journal of Biological Chemistry, 269(41): 25605-25612.
21. Ohad, I., D.J. Kyle and C.J. Arntzen. 1984. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. The Journal of cell biology, 99(2): 481. [DOI:10.1083/jcb.99.2.481]
22. Shavrukov, Y., N. Gupta, J. Miyazaki, M. Baho, K. Chalmers, M. Tester, P. Langridge and N. Collins. 2010. HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Functional and Integrative Genomics, 10: 277-291. [DOI:10.1007/s10142-009-0153-8]
23. Shokrpour, M. and E. Esfandiari. 2014. Grouping Different Wheat Varieties for Salt Tolerance using Some Biochemical and Physiological Indices. Journal of Crop Breeding, 6(14): 54-66 (In Persian).
24. Singh, R.P., A. Runthala, S. Khan and P.N. Jha. 2017. Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PloS one, 12(9). [DOI:10.1371/journal.pone.0183513]
25. Xu, Y., C. Chen, D. Ji, N. Hang and C. Xie. 2014. Proteomic profile analysis of Pyropia haitanensis in response to high-temperature stress. Journal of applied phycology, 26(1): 607-618. [DOI:10.1007/s10811-013-0066-8]
26. Zhang, X., Y. Chen, X. Lin, X. Hong, Y. Zhu, W. Li, W. He, F. An and H. Guo. 2013. Adenine phosphoribosyl transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis. Molecular plant, 6(5): 1661-1672. [DOI:10.1093/mp/sst071]
27. Zhu, Y., A. Dong, D. Meyer, O. Pichon, J.P. Renou, K. Cao and W.H. Shen. 2006. Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth. The Plant Cell, 18(11): 2879-2892. [DOI:10.1105/tpc.106.046490]
28. Jiang, Q., X. Li, F. Niu, X. Sun, Z. Hu and H. Zhang. 2017. iTRAQ‐based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics, 17(8): 1600265. [DOI:10.1002/pmic.201600265]
29. Lv, D.W., G.R. Zhu, D. Zhu, Y.W. Bian, X.N. Liang, Z.W. Cheng, X. Deng and Y.M. Yan. 2016. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. Journal of proteomics, 143: 93-105 [DOI:10.1016/j.jprot.2016.04.013]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.