دوره 11، شماره 31 - ( پاییز 1398 )                   جلد 11 شماره 31 صفحات 104-92 | برگشت به فهرست نسخه ها


XML English Abstract Print


پردیس کشاورزی و منابع طبیعی دانشگاه تهران
چکیده:   (2378 مشاهده)
     از آنجائی­که خشکی به عنوان یکی ازمهم‌ترین عوامل محدود‌کننده رشد و تولید گیاهان زراعی شناخته شده است. شناسایی ژنوتیپ‌های متحمل به تنش خشکی امری ضروری می‌باشد. براین اساس پژوهش حاضر با هدف ارزیابی تحمل ژنوتیپ‌های لوبیا و تاثیر سطوح مختلف تنش خشکی بر برخی از صفات فیزیولوژیک و کلروفیل فلورسانس آن‌ها به سطوح مختلف تنش خشکی صورت پذیرفت. این پژوهش با کشت بذور لوبیا در آزمایشی به صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی و اعمال تنش خشکی در سطوح (100%، 75%، 50% و 25% ظرفیت زراعی) در گلخانه پژوهشی دانشگاه تهران انجام شد. با توجه به نتایج به دست آمده اعمال تنش شدید سبب کاهش محتوای آب نسبی برگ گردید ولی به محتوای نشت الکترولیت و دمای برگ نمونه‌ها افزوده شد. از طرفی میزان سبزینگی برگ، Fm، Fv، Fv/Fm با اعمال تنش ملایم نسبت به شاهد (%75 ظرفیت زراعی) افزایش یافت ولی با اعمال تنش‌های شدید کاهش چشمگیر این صفات مشاهده شد. همچنین میزان F0 در تنش‌های شدید افزایش یافت. در این میان بیشترین میزان سبزینگی برگ، Fv/Fm، Fm و Fv و همچنین کمترین میزان دمای برگ و محتوای نشت الکترولیت در تمامی سطوح تنش به ترتیب به ژنوتیپ‌های COS-16 و D81083 مربوط بود. بر این اساس ژنوتیپ‌های COS-16 و D81083 به ترتیب به­عنوان ژنوتیپ‌های متحمل و نیمه‌متحمل به تنش خشکی شناخته شدند. همچنین، نتایج نشان داد که تنش خشکی تاثرات سوئی بر ژنوتیپ‌های لوبیا اعمال نموده ولی میزان این خسارات با توجه به تفاوت ژنوتیپ‌ها متفاوت می‌باشد.
 
 
متن کامل [PDF 2974 kb]   (693 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1396/11/13 | ویرایش نهایی: 1398/10/8 | پذیرش: 1397/7/2 | انتشار: 1398/9/13

فهرست منابع
1. Abebe, A., M.A. Brick and R. Kirkby. 1998. Comparison of selection indices to identify productive dry bean lines under diverse environmental conditions. Field Crops Research, 58: 15-23. [DOI:10.1016/S0378-4290(98)00082-3]
2. Abolhasani, K. and G. Saiedi. 2006. Evaluation of drought tolerance of safflower lines based on tolerance and sensitivity indices to water stress. Journal of Science and Technology of Agriculture and Natural Resourc, 10(3): 407-418 (In Persian).
3. Ahmadizadeh, M. 2013. Physiological and agromorphological response to drought stress. Middle-East Journal Science Research, 13: 998-1009.
4. Ali, A., N. Ali, N. Ullah, F. Ullah, M. Adnan and Z. Ahmad. 2013. Effect of drought stress on the physiology and yield of the Pakistani wheat germplasm. International Journal of Advanced Science and Technology, 2: 419 -430.
5. Almeselmani, M., F. Abdullah, F. Hareri, M. Naaesan, M.A. Ammar and O. Zuher-Kanbar. 2011. Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. Journal of Agricultural Science, 3: 127-133. [DOI:10.5539/jas.v3n3p127]
6. Antonin, M.C., J. Yeller and M. Sanchez- Diaz. 1995. Effect of temporary drought on nitrate -fed and nitrogen -fixing alfalfa plants. Plant Science, 107: 159-165. [DOI:10.1016/0168-9452(95)04108-7]
7. Bajji, M., J.M. Kinet and S. Lutts. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Journal of Plant Growth Regulation, 36(1): 61-70. [DOI:10.1023/A:1014732714549]
8. Basu, P.S., S. Ashoo, N.P. Sukumaran and A. Sharma. 1998. Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetic, 35 :13-19. [DOI:10.1023/A:1006801311105]
9. Behra, R.K., P.C. Mishra and N.K. Choudhury. 2002. High irradiance and water stress induce alteration pigment composition and chloroplast activities of primary wheat leaves. Plant Physiology. 159: 967-973. [DOI:10.1078/0176-1617-00823]
10. Blum, A. 1988. Plant breeding for stress environments. CRC Press, USA, 222: 46-55.
11. Cornic, G. 2000. Drought stress inhibits photosynthesis by decreased stomatal aperture - not by affecting ATP synthesis. TIBS, 5: 187-188. [DOI:10.1016/S1360-1385(00)01625-3]
12. De Lucena, C.C., D.L. De Siqueira, H.N. Martinez and P.R. Cecon. 2012. Salt stress change chlorophyll fluorescence in mango, Fruticultura Jaboticabal, 34(4): 1245-1255. [DOI:10.1590/S0100-29452012000400034]
13. Emeterio-Payro, D.L.C., P. Gepts, P.C. Garciamarin and D.Z. Villareal. 2004. Spatial distribution of genetic diversity in the wild population of (Phaseolus vulgaris L.) from Guanajuato and Michoacan, Mexico. Genetic Crop Research, 9: 1-11.
14. Erdem, Y., S. Shirali, T. Erdem and D. Kenar. 2006. Determination or crop water stres index for irrigation scheduling of Bean (Phaseolus vulgaris L.). Journal Agriculture and Forest, 30: 195-202.
15. Flageaa, Z., B. Pastore, R.G. Campanile and N. Di Fonzo. 1994. Photochemical quenching of chlorophyll fluorescence and drough tolerance in different durum wheat (Triticum durum) cultivars. 1. Agricutural Science Cambridge, 122(2): 183-192. [DOI:10.1017/S0021859600087359]
16. Fracheboud, Y. 2006. Using chlorophyll fluorescence to study photosynthesis. Institute of Plant Sciences ETH, Universitatstrass, CH-8092 Zurich.
17. Ghanbari, A., M.R. Shakiba, M. Toorchi and R. Choukan. 2013. Morpho-physiological responses of common bean leaf to water deficit stress. European Journal of Experimental Biology, 3: 487-492.
18. Hak, R., U. Rinderle-Zimmer, H.K. Linchtenthaler and L. Natr. 1993. Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves. Photosynthetic, 28: 151-159.
19. Hossein, S., E. Aalii, R. Seifollahi and A. Parchehbai. 2012. Physiological traits related to yield of wheat under drought stress in early, mid and late stages of grain filling. Annual Biology Research, 3: 2947- 2952.
20. Hosseini Salekdeh, G.R., R. John, E. Boyer and M. John. 2009. Conceptual framework for drought phenotyping during molecular breeding. Trends in Plant Science, 14: 1360-1385. [DOI:10.1016/j.tplants.2009.07.007]
21. Johnson, R., N.M. Frey and N. Dale. 2002. Effect of water stress on photosynthesis and transpiration of flag leaves and spikes of barley and wheat. Crop Science, 5: 728-731. [DOI:10.2135/cropsci1974.0011183X001400050035x]
22. Jones, H.G. 2004. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Advances in Botanical Research, 41: 107-163. [DOI:10.1016/S0065-2296(04)41003-9]
23. Kamoshita, A., R.C. Babu, N.M. Boopathi and S. Fukai. 2008. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Research, 109: 1-23. [DOI:10.1016/j.fcr.2008.06.010]
24. Katerji, N., J.W. Van Hoorn, A. Hamdy, M.M. Mastrorilli and E. Karzel. 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agriculture Water Manage, 34: 57-69. [DOI:10.1016/S0378-3774(96)01294-2]
25. Keyvan, S. 2010. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal Animal Plant Science, 8: 1051-1060.
26. Lawlor, D.W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant, Cell and Environment, 25: 275-294. [DOI:10.1046/j.0016-8025.2001.00814.x]
27. Legg, B.J., W.D. Day, W. Lawlor and K.J. Parkinson. 2000. The effects of drought on barley growth: models and measurements showing the relative importance of leaf area and photosynthetic rate. The Journal of Agricultural Science, 92: 703-716. [DOI:10.1017/S0021859600053958]
28. Levitt, J. 1980. Responses of plants to environmental stress: Water, radiation, salt and other stresses, (2nd ed.). Academic Press, NewYork, 3-211.
29. Lewis, G., B. Schrire, B. Mackinder and M. Lock. 2005. Legumes of the world. The Royal Botanic Gardens, Kew, Richmond, UK, 577 pp.
30. Liang, J., J. Zhang and M. Woog. 1997. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis Research, 51: 149-159. [DOI:10.1023/A:1005797410190]
31. Luquet, D., A. Begue, A. Vidal, P. Clouvel, J. Dauzat, A. Olioso, X.F. Gu and Y. Tao. 2003. Using multidirectional thermography to characterize water status of cotton. Remote Sens. Environ, 84: 411-421. [DOI:10.1016/S0034-4257(02)00131-1]
32. Lutts, S., J.M. Kinet and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (oryza sativa L.) cultivars differing in salinity resistance. Journal Annals of Botany, 78: 389-398. [DOI:10.1006/anbo.1996.0134]
33. Ma, B.L., M.J. Morison and H.D. Videng. 1995. Leaf greenness and photosynthetic rates in soybean. Crop Science, 35: 1411-1414. [DOI:10.2135/cropsci1995.0011183X003500050025x]
34. Mamnoei, E. and S.R. Sharifi. 2010. Study the effects of water deficit on chlorophyll fluorescence indices and the amount of proline in six barley genotypes and its relation with canopy temperature and yield. Journal of Plant Biology, 5: 51-62 (in Persian).
35. Manivannan, P., C.A. Jaleel, A. Kishorekumar, B. Sankar, R. Somasundaram and R. Panneerselvam. 2008. Protection of Vigna unguiculata (L.) Walp. Plants from salt stress by paclobutrazol, Colloids Surf. B: Biointerfaces, 61: 315-318. [DOI:10.1016/j.colsurfb.2007.09.007]
36. Manivannan, P., C.A. Jaleel, A. Kishorekumar, B. Sankar, R. Somasundaram, R. Sridharan and R. Panneerselvam. 2007. Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. By propiconazole under water deficit stress, Colloids Surf. B: Biointerfaces, 57: 69-74. [DOI:10.1016/j.colsurfb.2007.01.004]
37. Martınez, J.P., H. Silva, J.F. Ledent and M. Pinto. 2007. Effect of drought stress on theosmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Europ Journal Agronomy, 26: 30-38. [DOI:10.1016/j.eja.2006.08.003]
38. Miyashita, K., S. Tanakamaru, T. Maitani and K. Kimura. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany, 53: 205-214. [DOI:10.1016/j.envexpbot.2004.03.015]
39. Moffatt, J., M.R.G. Sears and G. Paulsen. 1990. Wheat height temperature tolerance during reproductive growth. Evaluation by chlorophyll fluorescence. Crop Science, 112: 881-885. [DOI:10.2135/cropsci1990.0011183X003000040024x]
40. Molnar, I., L. Gaspar, L. Stehli, S. Dulai, E. Sarvari, I. Kiraly, G. Galiba and M. Molnar- Lang. 2002. The effects of drought stress on the photosynthetic processes of wheat and of Aegilops biuncialis genotypes originating from various habitats. Proceeding of the 7th Hungarian Congress on Plant Physiology. Acta Biologia, 46: 115-116.
41. Musavizadeh, Z.S., H. Najafi Zarini, S.H. Hashemi-Petroudi and S.K. Kazemitabar. 2018. Assessment of proline, chlorophyll and malondialdehyde in sensitive and tolerant rice (Oryza sativa L.) cultivars under salt stress conditions. Journal of crop breeding, 10 (25): 28-35. [DOI:10.29252/jcb.10.25.28]
42. Naroui Rad, M.R., M. Abdul Kadir, M.Y. Rafii, H.Z.E. Jaafa and M. Danaee. 2013. Gene action for physiological parameters and use of relative water content (RWC) for selection of tolerant and high yield genotypes in F2 population of wheat. Australian Journal of Crop Science, 7(3): 407-413.
43. Nouri, A., A. Etminan, J.A.T. Silva and R. Mohammadi. 2011. Assessment of yield, yieldrelated traits and drought tolerance of durum wheat genotypes (Triticum turgidum var. durum Desf.). Australian Journal of Crop Science, 5(1): 8-16.
44. Patel, N.R., A.N. Mehta and A.M. Shekh. 2001. Canopy temperature and water stress quantification in rainfed pigeonpea (Cajanus cajan L.). Agriculture Forest Meteorology, 109: 223-232. [DOI:10.1016/S0168-1923(01)00260-X]
45. Percival, G.C. 2005. Use of chlorophyll fluorescence to identify chemical and environmental stresses in leaf tissue of three oak species. Journal of Arboriculture, 31(5): 215-227.
46. Rahbarian, R., R.A. Khavari-nejad, A. Ganjeali, A.R. Bagheri and F. Najafi. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. ACTA Biological Cracoviensia Series Botanica, 53: 47-56. [DOI:10.2478/v10182-011-0007-2]
47. Ramirez-Vallejo, P. and J.D. Kelly. 1998. Traits related to drought resistance in common bean. Euphytica, 99: 127-136. [DOI:10.1023/A:1018353200015]
48. Ranjbar-Fordoei, A., R. Samson and P. Van Damme. 2006. Chlorophyll fluorescence performance of sweet almond (Prunus dulcis (Miller) D. Webb) in response to salinity stress, Photosynthetica, 44(4): 513-522. [DOI:10.1007/s11099-006-0064-z]
49. Rascio, A., M. Russo, C. Platani and N. Difonzo. 1998. Drought intensity effects on genotypic differences in tissue affinity for strongly bound water. Plant Science, 132: 121-126. [DOI:10.1016/S0168-9452(98)00006-5]
50. Renu, M., S.S. Dhanda, R.K. Rana and I. Singh. 2004. Membrane thermostability as an indicator of heat tolerance at seedling stage in bread wheat. National Journal of Plant Improvement, 6: 133-135.
51. Sadeghi, F. 2018. Evaluation of drought tolerance indices of grain maize hybrids under deficit irrigation. Journal of crop breeding, 10 (25): 81-90. [DOI:10.29252/jcb.10.25.81]
52. Sairam, R.K. and D.C. Saxena. 2000. Oxidative stress and antioxidant in wheat genotypes: possible mechanism of water stress tolerance. Journal Agronomy and Crop Science, 184: 55-61. [DOI:10.1046/j.1439-037x.2000.00358.x]
53. Sanchez-Rodrıguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, M.A. Rosales, L. Romero and J.M. Ruiz. 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178: 30-40. [DOI:10.1016/j.plantsci.2009.10.001]
54. Schlemmer, M.R., D.D. Francis, J.F. Shanahan and J.S. Schepers. 2005. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal, 97: 106-112. [DOI:10.2134/agronj2005.0106]
55. Schonfeld, M.A., R.C. Johnson, B.F. Carver and D.W. Mornhinweg. 1988. Water relations in winter wheat as drought resistance indicators. Crop Science, 28: 526-531. [DOI:10.2135/cropsci1988.0011183X002800030021x]
56. Siva, M.A., J.A. Da Silva and S. Sharma. 2007. Use of physiology parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, 19: 193-201. [DOI:10.1590/S1677-04202007000300003]
57. Slabbert, M.M. and G.H.J. Krüger. 2014. Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. South African Journal of Botany, 95: 123-128. [DOI:10.1016/j.sajb.2014.08.008]
58. Taize, L. and E. Zaiger. 2007. ABA and drought adaptation. Chapter, 25: 671-682.
59. Turkan, I., M. Bor, F. Ozdemir and H. Koca. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought - tolerant P. Acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168: 223-231. [DOI:10.1016/j.plantsci.2004.07.032]
60. Velu, G. and K. Palanisami. 2002. Impact of moisture stress on growth and yield of sunflower. Madras Agricultural Journal, 88: 660-665.
61. Wanjura, D.F., S.J. Mass, J.C. Winslow and D.R. Upchurch. 2004. Scanned and spotmeasured canopy temperatures of cotton and corn. Computers and Electronics in Agriculture, 44: 33-48. [DOI:10.1016/j.compag.2004.02.005]
62. Wanjura, D.F. and D.R. Upchurch. 2000. Canopy temperature characterization of corn and cotton water status. Transaction ASAE, 43: 867- 875. [DOI:10.13031/2013.2982]
63. Ward, K., R. Scarth, J. Daun and P.B.E. Mcvetty. 1992. Effects of genotype and environment on seed chlorophyll degradation during ripening in four cultivars of oilseed rape (Brassica napus L.). Canadian Journal of Plant Science, 72: 643-649. [DOI:10.4141/cjps92-080]
64. Yang, Y., Q. Liu, C. Han, Y.Z. Qiao, X.Q. Yao and H.J. Yin. 2007. Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosyntetica, 45(4): 613-619. [DOI:10.1007/s11099-007-0106-1]
65. Zadehbagheri, M., M.M. Kamelmanesh, S. Javanmardi and S. Sharafzadeh. 2012. Effect of drought stress on yield and yield components, relative leaf water content, proline and potassium ion accumulation in different white bean (Phaseolus vulgaris L.) genotype. African Journal Agriculture Research, 7(42): 5661-5670. [DOI:10.5897/AJAR10.901]
66. Zamanian, M., S.A. Syadat, GH. Fathi, R. Ghogan, A. Jafari, M. Bakhshandeh and A. Moghadam. 2013. Application of chlorophyll fluorescence attributes in selection for cold tolerance in some clover species. Seed and Plant Production Journal, 29: 251-267 (In Persian).
67. Zlatev, Z. 2009. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnol. Biotechnol. Equip, 23(4): 438-441. [DOI:10.1080/13102818.2009.10818458]
68. Zlatev, Z.S. and I.T. Yordanov. 2004. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg Journal Plant Physiol, 30: 3-18.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.