دوره 13، شماره 37 - ( بهار 1400 )                   جلد 13 شماره 37 صفحات 40-22 | برگشت به فهرست نسخه ها


XML English Abstract Print


موسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، مراغه، ایران
چکیده:   (2268 مشاهده)
   در دیم­زارها، تنش‌ خشکی می‌تواند جذب روی توسط غلات را به­طرق مختلف از جمله با کاهش رشد و توسعه ریشه، کاهش میزان تحرک و جابجایی روی در خاک تحت­تاثیر قرار داده و کاهش دهد. از طرف دیگر، تحمل به تنش‌های محیطی نظیر خشکی معمولاً با نیاز بالا به عنصر روی برای تنظیم و حفظ بیان ژن‌های دخیل در محافظت از سلول‌‌ها در برابر اثرات مضر تنش همراه است. علاوه بر این، تحت شرایط کمبود روی، گیاهان قادر به کاهش تولید رادیکال‌های آزاد حاصل از خشکی و نیز غیر­سمی کردن اکسیژن فعال نیستند. از اینرو، تأثیر توأم کمبود روی و تنش‌ خشکی در دیم­زارها موجب کاهش عملکرد دانه غلات و نیز کیفیت تغذیه‌ای گشته و در نتیجه موجب سوء تغذیه در میلیاردها انسان در جهان می‌گردد. گرچه کاربرد کود روی می‌تواند به حل این مشکل کمک نماید، ولی به ­دلیل مشکلاتی نظیر خشکی سطح خاک در دیم­زارها، تثبیت قسمت اعظم کود در خاک‌های رسی و عدم دسترسی زارعین به کود روی، جهت نیل به یک راه­حل اساسی و پایدار برای تصحیح کمبود روی در دیم­زارها، استفاده از ژنوتیپ‌های کارا در جذب و استفاده از روی می‌تواند تکمیل کننده کاربرد کود روی در نظر گرفته شود. از اینرو استفاده از روش‌های به‌نژادی در زمینه معرفی ارقامی با کارایی بالا در جذب و کارایی روی تحت شرایط دیم جهت تهیه و نیز بهبود وضعیت غذایی بخش مهمی از 8 میلیارد انسان در سال 2025 بیش از پیش اهمیت می­ یابد. کمبود عنصر روی در خاک گسترده‌ترین کمبود عناصر ریزمغذی در گیاهان زراعی است و تقریباً 50 درصد خاک‌های تحت زراعت غلات با کمبود عنصر روی قابل دسترس گیاه مواجه هستند. مشکل کمبود روی در شرایط دیم به­دلیل نبود رطوبت کافی در اطراف ریشه تشدید می‌گردد. کمبود روی باعث کاهش عملکرد و کیفیت تغذیه‌ای غلات از جمله گندم شده و باعث سوء تغذیه بیش از یک میلیارد انسان مخصوصاً در کشورهای در حال توسعه از جمله ایران شده است. مرور منابع نشان می‌دهد که راه­حل اساسی و پایدار برای افزایش میزان روی در دانه استفاده از سیستم‌های کشاورزی از حمله اصلاح نباتات می‌باشد. صفات مؤثر در افزایش جذب روی، در ژنوم گندم موجود بوده و می‌تواند در اصلاح ارقامی با غلظت بالای روی و آهن بدون کاهش پروتئین و عملکرد مورد استفاده قرار گیرند. ضمناً این صفات در محیط‌های مختلف از پایداری مطلوبی نیز برخوردار هستند. البته لازم به ذکر است فاکتورهای منفی در خاک از قبیل pH بالا و مواد ارگانیک کم می‌توانند میزان روی قابل دسترس برای گیاه را کاهش داده و توانایی ارقام اصلاح­ شده را در جذب و تجمع روی در بذر به ­شدت تحت ­تاثیر قرار دهند. تنوع ژنتیکی برای کارائی روی در غلات مشاهده شده، که این تنوع می‌تواند در برنامه‌‌های اصلاح غلات برای معرفی ارقامی با کارائی بهتر در جذب و تجمع روی مورد بهره‌برداری قرار گیرد. سازوکارهای مختلفی نظیر افزایش جذب روی از خاک، افزایش دسترسی عنصر در ناحیه ریزوسفر ریشه در نتیجه آزادسازی ترشحات ریشه‌ای، کارایی بهتر در استفاده از روی در داخل گیاه می‌توانند باعث افزایش کارائی روی در گیاهان زراعی گردد. در گندم و جو توانائی جذب روی از طریق ریشه یکی از مکانیسم‌های مهم در کارائی روی می‌باشد. تنش خشکی و کمبود روی از عوامل عمده محدود کننده تولید محصول در دیمزارهای ایران می‌باشد، ولی متأسفانه اصلاح برای کمبود روی و مطالعه برهم­کنش بین تنش خشکی و کمبود روی به­صورت وسیعی در دیم­زارها انجام نگرفته است. وضعیت تغذیه روی در گیاه ممکن است حساسیت گیاه به کمبود آب را به­طرق مختلف تحت­ تأثیر قرار دهد. گیاهان در معرض تنش روی، کارایی کمتری در استفاده از آب داشته و توانایی آنها در تنظیم فشار اسمزی جهت مقابله با تنش رطوبتی کمتر از گیاهانی است که به ­میزان کافی روی دسترسی دارند. به ­علاوه، تنش خشکی گیاهان را با القای تولید اکسیژن فعال می­ کشد. میزان کافی از روی در غیر­سمی کردن اکسیژن فعال و نیز کاهش تولید رادیکال­های آزاد مؤثر است. از این رو، کمبود روی احتمال کاهش عملکرد در نتیجه خشکی را تشدید می­ کند. از طرف دیگر، منابع موجود نشان می­ دهند کاربرد کودهای روی می­ تواند دسترسی گیاه به روی را افزایش داده و موجب افزایش تحمل به خشکی گردد.
واژه‌های کلیدی: تنش خشکی، دیمزار، عنصر روی، غلات
متن کامل [PDF 1441 kb]   (620 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1396/10/25 | ویرایش نهایی: 1400/3/24 | پذیرش: 1399/11/4 | انتشار: 1400/2/10

فهرست منابع
1. Abdoli, M., E. Esfandiari, S.B. Mousavi and B. Sadeghzadeh. 2014. Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). Azarian Journal of Agriculture, 1(1): 11-17.
2. Abdoli, M., E. Esfandiari, B. Sadeghzadeh and S.B. Mousavi. 2016. Zinc application methods affect agronomy traits and grain micronutrients in bread and durum wheat under zinc-deficient calcareous soil. Yuzuncu Yil University Journal Of Agricultural Sciences, 26(2): 202-214.
3. Abo-Hegazi, A.M.T., N.B. Rofail, E.A. Eissa and A.M. Hassan. 1996. Effect of zinc on grain characteristics of draught-resistant rice mutants. Journal of Radioanalytical and Nuclear Chemistry, 206(2): 349-357. [DOI:10.1007/BF02039663]
4. Alloway, B.J. 2001. Zinc - the vital micronutrient for healthy, high-value crops. International Zinc Association, Brussels.
5. Alloway, B.J. 2004. Zinc in Soils and Crop Nutrition. International Zinc Association Communications. IZA publications, Brussels, Belgium.
6. Alloway, B.J. 2008. Zinc in Soils and Crop Nutrition. 2nd edition, published by IZA and IFA, Brussels, Belgium and Paris, France.
7. Amer, F., A.I. Rezk and H.M. Khalid. 1980 Fertilizer zinc efficiency in flooded calcareous soils Soil Science Society of America Journal, 44: 1025-1030. [DOI:10.2136/sssaj1980.03615995004400050031x]
8. Bagci, S.A., H. Ekiz, A. Yilmaz and I. Cakmak. 2007. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science, 193(3): 198-206. [DOI:10.1111/j.1439-037X.2007.00256.x]
9. Baligar, V.C., N.K. Fageria and Z.L. He. 2001. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal, 32: 921-950. [DOI:10.1081/CSS-100104098]
10. Barak, P. and P.A. Helmke. 1993. The chemistry of zinc, in Zinc in Soils and Plants, A.D. Robson, pp 1-13, Editor. Kluwer Academic Publishers: Dordrecht, The Netherlands. [DOI:10.1007/978-94-011-0878-2_1]
11. Barrow, N.J. 1993. Mechanisms of reaction of zinc with soil and soil components, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 15-31: Dordrecht, The Netherlands. 15-31. [DOI:10.1007/978-94-011-0878-2_2]
12. Barua, U.M., K.J. Chalmers, W.T.B. Thomas, C.A. Hackett, V. Lea, P. Jack, B.P. Forster, R. Waugh and W. Powell. 1993. Molecular mapping of genes determining height, time to heading, and growth habit in barley (Hordeum vulgare L.). Genome, 36: 1080-1087. [DOI:10.1139/g93-143]
13. Behera, S.K., A.K. Shukla, M. Singh, R.H. Wanjari and P. Singh. 2015. Yield and zinc, copper, manganese and iron concentration in maize (Zea mays L.) grown on vertisol as influenced by zinc application from various zinc fertilizers. Journal of Plant Nutrition, 38(10): 1544-1557. [DOI:10.1080/01904167.2014.992537]
14. Berg, J.M. and Y. Shi. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 271: 1081-1085. [DOI:10.1126/science.271.5252.1081]
15. Bouis, H. 1995. Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Administrative Committee on Coordination-Subcommittee on Nutrition of the United Nations. ACC/SCN c/o WHO, Geneva, Switzerland. SCN News, 12: 15-19.
16. Bouis, H. 1996. Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition Reviews, 54(5): 131-137. [DOI:10.1111/j.1753-4887.1996.tb03915.x]
17. Bouis, H.E. 2007. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proceedings of the Nutrition Society, 62(2): 403-411. [DOI:10.1079/PNS2003262]
18. Bowler, C., M.V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Biology, 43(1): 83-116. [DOI:10.1146/annurev.pp.43.060192.000503]
19. Brawn, K. and I. Fridovich. 1981. DNA strand scission by enzymically generated oxygen radicals. Archives of Biochemistry and Biophysics, 206(2): 414-419. [DOI:10.1016/0003-9861(81)90108-9]
20. Bray, E.A., J. Bailey-Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses, in Biochemistry and molecular biology of plants, W. Gruissem, B. Buchannan, and R. Jones, Editors. American Society of Plant Physiologists, Rockville, MD. 1158-1249.
21. Brennan, R.F., J.D. Armour and D.J. Reuter. 1993. Diagnosis of zinc deficiency, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic, pp. 168-181. 168-181. [DOI:10.1007/978-94-011-0878-2_12]
22. Brown, P.H., I. Cakmak and Q. Zhang. 1993. Form and function of zinc in plants, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 93-106: Dordrecht, The Netherlands. [DOI:10.1007/978-94-011-0878-2_7]
23. Brümmer, G.W., J. Gerth and K.G. Tiller. 1988. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of Soil Science, 39(1): 37-52. [DOI:10.1111/j.1365-2389.1988.tb01192.x]
24. Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist, 146(2): 185-205. [DOI:10.1046/j.1469-8137.2000.00630.x]
25. Cakmak, I. 2002. Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant and Soil, 247: 3-24. [DOI:10.1007/978-94-017-2789-1_1]
26. Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302: 1-17. [DOI:10.1007/s11104-007-9466-3]
27. Cakmak, I. and H.J. Braun. 2001. Genotypic variation for zinc efficiency, in Application of Physiology in Wheat Breeding, M.P. Reynolds, J.I. Ortiz-Monasterio, and A. McNab, Editors. D.F. CIMMYT, pp. 183-199: Mexico. 183-199.
28. Cakmak, I., R. Derici, B. Torun, I. Tolay, H. Braun and R. Schlegel. 2012. Role of rye chromosomes in improvement of zinc efficiency in wheat and. in Plant Nutrition for Sustainable Food Production and Environment: Proceedings of the XIII International Plant Nutrition Colloquium, 13-19 September 1997, Tokyo, Japan. Springer Science & Business Media. [DOI:10.1007/978-94-009-0047-9_65]
29. Cakmak, I., H. Ekiz, A. Yilmaz, B. Torun, N. Koleli, I. Gultekin, A. Alkan and S. Eker. 1997. Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils. Plant and Soil, 188(1): 1-10. [DOI:10.1023/A:1004247911381]
30. Cakmak, I., R. Graham and R.M. Welch. 2002. Agricultural and molecular genetic approaches to improving nutrition and preventing micronutrient malnutrition globally, in Encyclopedia of Life Support Systems, I. Cakmak and R.M. Welch, Editors. Eolss Publishers, Oxford, pp 1075-1099. 1075-1099.
31. Cakmak, I., K.Y. Gulut, H. Marschner, and R.D. Graham. 1994. Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. Journal of Plant Nutrition, 17(1): 1-17. [DOI:10.1080/01904169409364706]
32. Cakmak, I. and H. Marschner. 1988. Enhanced superoxide radical production in roots of zinc-deficient plants. Journal of Experimental Botany, 39(10): 1449-1460. [DOI:10.1093/jxb/39.10.1449]
33. Cakmak, I., H. Ozkan, H.J. Braun, R.M. Welch and V. Romheld. 2000. Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food and Nutrition Bulletin, 21(401-403). [DOI:10.1177/156482650002100411]
34. Cakmak, I., L. Oztürk, S. Eker, B. Torun, H.I. Kalfa and A. Yılmaz. 1997. Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc eficiency. Journal of Plant Physiology, 151(1): 91-95. [DOI:10.1016/S0176-1617(97)80042-9]
35. Cakmak, I., N. Sari, H. Marschner, H. Ekiz, M. Kalaycy, A. Yilmaz and H.J. Braun. 1996. Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant and Soil, 180: 183-189. [DOI:10.1007/BF00015301]
36. Cakmak, I., N. Sari, H. Marschner, M. Kalayci, A. Yilmaz, S. Eker and K.Y. Gulut. 1996. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in Zn efficiency. Plant and Soil, 180: 173-181. [DOI:10.1007/BF00015300]
37. Cakmak, I., N. Sary, H. Marschner, H. Ekiz, M. Kalaycy, A. Yilmaz and H.J. Braun. 1996. Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant and Soil, 180: 183-189. [DOI:10.1007/BF00015301]
38. Cakmak, I., I. Tolay, A. Ozdemir, H. Ozkan, L. Ozturk and C.I. Kling. 1999. Differences in zinc efficiency among and within diploid, tetraploid and hexaploid wheats. Annals of Botany, 84(2): 163-171. [DOI:10.1006/anbo.1999.0902]
39. Cakmak, I., B. Torun, B. Erenoglu, L. Ozturk, H. Marschner, M. Kalayci, H. Ekiz and A. Yilmaz. 1998. Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica, 100: 349-357. [DOI:10.1023/A:1018318005103]
40. Castilho, P.D. and W.J. Chardon. 1995. Uptake of soil cadmium by three field crops and its prediction by a pH-dependent Freundlich sorption model. Plant and Soil, 171: 263-266. [DOI:10.1007/BF00010280]
41. Chesworth, W. 1991. Geochemistry of micronutrients, in Micronutrients in Agriculture, J.J. Mortvedt, et al., Editors. Soil Science Society of America Inc., pp. 1-30: Madison, USA. 1-30. [DOI:10.2136/sssabookser4.2ed.c1]
42. Daneshbakhsh, B., A.H. Khoshgoftarmanesh, H. Shariatmadari and I. Cakmak. 2013. Phytosiderophore release by wheat genotypes differing in zinc deficiency tolerance grown with Zn-free nutrient solution as affected by salinity. Journal of Plant Physiology, 170(1): 41-46. [DOI:10.1016/j.jplph.2012.08.016]
43. Dang, Y.P., D.G. Edwards, R.C. Dalal and K.G. Tiller. 1993. Identification of an index tissue to predict zinc status of wheat. Plant and Soil, 154: 161-167. [DOI:10.1007/BF00012521]
44. Demment, W.M., M.M. Young and R.L. Sensenig. 2003. Providing micronutrients through food-based solutions: a key to human and national development. J Nutr, 133: 3879-3885. [DOI:10.1093/jn/133.11.3879S]
45. Donald, C.M. and J.A. Prescott. 1975. Trace elements in Australian crop and pasture production1924-74, in Trace Elements in Soil-Plant-Animal Systems, D.J.D. Nicholas and A.R. Egan, Editors. Academic Press, Inc., pp. 7-37: New York. 7-37. [DOI:10.1016/B978-0-12-518150-1.50008-2]
46. Dong, B., Z. Rengel and R.D. Graham. 1995. Root morphology of wheat genotypes differing in zinc efficiency. Journal of Plant Nutrition, 18(12): 2761-2773. [DOI:10.1080/01904169509365098]
47. Ekiz, H., S.A. Bagcý, A. Kýral, S. Eker, I. Gültekin, A. Alkan and I. Cakmak. 1998. Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soils. Journal of Plant Nutrition, 21(10): 2245-2256. [DOI:10.1080/01904169809365558]
48. Erenoglu, B., I. Cakmak, H. Marschner, V. Romheld, S. Eker, H. Daghan, M. Kalayci and H. Ekiz. 1996. Phytosiderophore release does not relate well with zinc efficiency in different bread wheat genotypes. Journal of Plant Nutrition, 19: 1569-1580. [DOI:10.1080/01904169609365222]
49. Eyüpoglu, F., N. Kurucu and U. Sanısag. 1994. Status of plant available micronutrients in Turkish soils. In: Soil and Fertilizer. Research Institute Annual Report No. R-118. Ankara, Turkey, pp. 25-32. 25-32.
50. Faber, B.A., R.J. Zasoski, R.G. Burau, and K. Uriu. 1990. Zinc uptake by corn as affected by vesicular-arbuscular mycorrhizae. Plant and Soil, 129(2): 121-130. [DOI:10.1007/BF00032404]
51. Fageria, N.K. 2002. Micronutrients' influence on root growth of upland rice, common bean, corn, wheat, and soybean. Journal of Plant Nutrition, 25(3): 613-622. [DOI:10.1081/PLN-120003385]
52. Fageria, N.K., V.C. Baligar and R.B. Clark. 2002. Micronutrients in crop production. Adv. Agron, 77: 185-267. [DOI:10.1016/S0065-2113(02)77015-6]
53. Feiziasl, V. 2008. Comparison of different methods for determining the Zn critical level of dryland wheat in the Northwest of Iran. Journal Of Water and Soil, 22(2): 133-149 (In Persian).
54. Foth, H.D. and B.G. Ellis. 1997. Soil Fertility. 2nd ed.: CRC Press.
55. Garg, B.K. 2003. Nutrient uptake and management under drought: nutrient-moisture interaction. Curr. Agric, 27(1/2): 1-8.
56. Genc, Y., G.K. McDonald and R.D. Graham. 2000. Effect of seed zinc content on early growth of barley (Hordeum vulgare L.) under low and adequate soil zinc supply. Australian Journal of Agricultural Research, 51: 37-45. [DOI:10.1071/AR99045]
57. Genc, Y., G.K. McDonald, and R.D. Graham. 2002. A soil-based method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc efficiency in mature plants. Australian Journal of Agricultural Research, 53: 409-421. [DOI:10.1071/AR01088]
58. Genc, Y., G.K. McDonald, and R.D. Graham. 2006. Contribution of different mechanisms to zinc efficiency in bread wheat during early vegetative stage. Plant and Soil, 281: 353-367. [DOI:10.1007/s11104-005-4725-7]
59. Ghodsizad, L., F. Rahimzadeh Khoei and B. Sadeghzade. 2013. Zinc absorption evaluation in barley varieties and landraces under cold dryland conditions. Master of Science, Tabriz Azad University (In Persian).
60. Goodman, B.A. and A.C. Newton. 2005. Effects of drought stress and its sudden relief on free radical processes in barley. J. Sci. Food Agric, 85: 47-53. [DOI:10.1002/jsfa.1938]
61. Graham, R.D. 1984. Breeding for nutritional characteristics in cereals. Advances in Plant Nutrition, 1: 57-102.
62. Graham, R.D., J.S. Ascher and S.C. Hynes. 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil, 146: 241-250. [DOI:10.1007/BF00012018]
63. Graham, R.D. and Z. Rengel. 1993. Genotypic variation in Zn uptake and utilization by plants, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 107-114: Dordrecht, The Netherlands. 107-114. [DOI:10.1007/978-94-011-0878-2_8]
64. Graham, R.D. and R.M. Welch. 1996. Breeding for staple-food crops with high micronutrient density, in Working Papers on Agricultural Strategies for Micronutrients, No. 3. International Food Policy Research Institute: Washington, D.C. 1-72.
65. Graham, R.D., R.M. Welch and H.E. Bouis. 2001. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advances in Agronomy, 70: 77-142. [DOI:10.1016/S0065-2113(01)70004-1]
66. Grewal, H.S., R.D. Graham and Z. Rengel. 1996. Genotypic variation in zinc efficiency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat. Plant and Soil, 186: 219-226. [DOI:10.1007/BF02415517]
67. Grotz, N., T. Fox, E. Connolly, W. Park, M.L. Guerinot and D. Eide. 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95(12): 7220-7224. [DOI:10.1073/pnas.95.12.7220]
68. Gunes, A., A. Inal, M. Alpaslan and I. Cakmak. 2006. Genotypic variation in P efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Science and Plant Nutrition, 52(4): 470-478. [DOI:10.1111/j.1747-0765.2006.00068.x]
69. Hacisalihoglu, G., J.J. Hart, Y. Wang, I. Cakmak and L.V. Kochian. 2003. Zinc efficiency is correlated with enhanced expression and activity of Cu/Zn superoxide dismutase and carbonic anhydrase in wheat. Plant Physiology, 131: 595-602. [DOI:10.1104/pp.011825]
70. Hajiboland, R., B. Singh and V. Romheld. 2001. Retranslocation of Zn from leaves as important contributing factor for zinc efficiency of rice genotypes, in Plant Nutrition - Food Security and Sustainability of Agro-ecosystems, W.J. Horst, et al., Editors. Kluwer: Dordrecht, The Netherlands. 226-227. [DOI:10.1007/0-306-47624-X_109]
71. Halvorson, A.D. and W.L. Lindsay. 1977. The critical Zn2+ concentration for corn and the nonabsorption of chelated zinc. Soil Science Society of America Journal, 41(3): 531-534. [DOI:10.2136/sssaj1977.03615995004100030020x]
72. Hart, J.J., W.A. Norvell, R.M. Welch, L.A. Sullivan and L.V. Kochian. 1998. Characterization of zinc uptake, binding, and translocation of bread and durum wheat cultivars. Plant Physiology, 118: 219-226. [DOI:10.1104/pp.118.1.219]
73. Hernandez-Ruiz, J., M.B. Arnao, A.N. Hiner, F. Garcia-Canovas and M. Acosta. 2001. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochemical Journal, 354(Pt 1): 107-114. [DOI:10.1042/bj3540107]
74. Karami, M., M. Afyuni, A.H. Khoshgoftarmanesh, A. Papritz and R. Schulin. 2009. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. Journal of Agricultural and Food Chemistry, 57(22): 10876-10882. [DOI:10.1021/jf902074f]
75. Kastrup, V., S. Steiger, U. Luttge, and E. Fischer-Schliebs. 1996. Regulatory effects of zinc on corn root plasma membrane H+-ATPase. New Phytologist, 134(1): 61-73. [DOI:10.1111/j.1469-8137.1996.tb01146.x]
76. Khan, H.R., G.K. McDonald and Z. Rengel. 1998. Chickpea genotypes differ in their sensitivity to Zn deficiency. Plant and Soil, 198(1): 11-18. [DOI:10.1023/A:1004241826907]
77. Khoshgoftarmanesh, A., H. Shariatmadari, N. Karimian, M. Kalbasi and M. Khajehpour. 2005. Zinc efficiency of wheat cultivars grown on a saline calcareous soil. Journal of Plant Nutrition, 27(11): 1953-1962. [DOI:10.1081/PLN-200030068]
78. Khoshgoftarmanesh, A.H., R. Schulin, R.L. Chaney, B. Daneshbakhsh and M. Afyuni. 2010. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30(1): 83-107. [DOI:10.1051/agro/2009017]
79. Kochian, L.V. 1991. Mechanisms of micronutrient uptake and translocation in plants, in Micronutrients in Agriculture, J.J. Mortvedt, et al., Editors. Soil Science Society of America, pp. 229-296: Madison, WI. 229-296. [DOI:10.2136/sssabookser4.2ed.c8]
80. Kothari, S.K., H. Marschner and V. Romheld. 1991. Contribution of VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown calacareous soil. Plant and Soil, 131: 177-185. [DOI:10.1007/BF00009447]
81. Lantican, M.A., P.L. Pingali and S. Rajaram. 2000. Are marginal wheat environments catching up? CIMMYT World Wheat Overview and Outlook, 2001: 39-44.
82. Li, C.Z., J. Jiao and G.X. Wang. 2004. The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Sci, 166: 303-315. [DOI:10.1016/j.plantsci.2003.09.019]
83. Li, H.Y., Y.G. Zhu, S.E. Smith, and F.A. Smith. 2003. Phosphorus-zinc interactions in two barley cultivars differing in phosphorus and zinc efficiencies. Journal of Plant Nutrition, 26(5): 1085-1099. [DOI:10.1081/PLN-120020077]
84. Lindsay, W.L. 1991. Inorganic equilibria affecting micronutrients in soils, in Micronutrients in Agriculture, J.J. Mordvedt, et al., Editors. SSSA Book Series No. 4, pp. 89-112: Madison, WI. 89-112. [DOI:10.2136/sssabookser4.2ed.c4]
85. Liu, Z. 1994. The soil zinc distribution in China. Chinese Agricultural Science, 27: 30-37.
86. Lombnaes, P. and B.R. Singh. 2003. Varietal tolerance to zinc deficiency in wheat and barley grown in chelator-buffured nutrient solution and its effect on uptake of Cu, Fe, and Mn. Journal of Plant Nutrition and Soil Science, 166: 76-83. [DOI:10.1002/jpln.200390015]
87. Loneragan, J.F. and M.J. Webb. 1993. Interactions between zinc and other nutrients affecting the growth of plants, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 119-134: Dordrecht, The Netherlands. 119-134. [DOI:10.1007/978-94-011-0878-2_9]
88. Malakouti, M.J., P. Keshavarz and N. Karimian. 2008. Comprehensive approach towards identical of nutrient deficiency and optimal fertilization for sustainable agriculture. 7 ed.: Trbiat Modares University. Pub. No. 102. Tehran.
89. Marschner, H. 1993. Zinc uptake from soils, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 59-77: Dordrecht, The Netherlands. 59-77. [DOI:10.1007/978-94-011-0878-2_5]
90. Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2 ed. London: Academic Press.
91. Marschner, H., V. Romheld and M. Kissel. 1986. Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition, 9: 695-713. [DOI:10.1080/01904168609363475]
92. McDonald, G.K., R.D. Graham, J. Lloyd, J. Lewis, P. Lonergan and H. Khabaz-Saberi. 2001. Breeding for improved zinc and manganese efficiency in wheat and barley. in Proceeding of the 10th Australian Agronomy Conference. Hobart, Australia, 2001: Department of Plant Science, Waite Institute, Glen Osmond, SA.
93. Moraghan, J.T. and H.J. Mascagni Jr. 1991. Environmental and soil factors affecting micronutrient deficiencies and toxicities, in Micronutrients in Agriculture, J.J. Mordvedt, et al., Editors. Soil Science Society of America, pp. 371-425: Madison, WI. 371-425. [DOI:10.2136/sssabookser4.2ed.c11]
94. Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta, 194(3): 346-352. [DOI:10.1007/BF00197534]
95. Mortvedt, J.J. and R.J. Gilkes. 1993. Zinc fertilisers, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 33-44: Dordrecht, The Netherlands. 33-44. [DOI:10.1007/978-94-011-0878-2_3]
96. Moshiri, F., M. Moez-Ardalan, M.M. Tehrani, and G.R. Savaghebi-Firouzabadi. 2010 Zinc efficiency of wheat cultivars in a calcareous soil with low zinc status. Journal Of Water and Soil, 24 (1): 145-153.
97. Narwal, R.P., B.R. Singh and A.R. Panhwar. 1983. Plant availability of heavy metals in a sludge-treated soil: I. Effect of sewage sludge and soil pH on the yield and chemical composition of rape. Journal of Environmental Quality, 12: 358-365. [DOI:10.2134/jeq1983.00472425001200030012x]
98. Nayyar, V.K., P.N. Takkar, R.L. Bansal, S.P. Singh, N.P. Kaur and U.S. Sadana. 1990. Micro-nutrients in soils and crops of Punjab. Research Bulletin. Department of Soils, Punjab Agricultural University: Ludhiana, India.
99. Oburger, E., B. Gruber, Y. Schindlegger, W.D. Schenkeveld, S. Hann, S.M. Kraemer, W.W. Wenzel and M. Puschenreiter. 2014. Root exudation of phytosiderophores from soil-grown wheat. New Phytologist, 203(4): 1161-1174. [DOI:10.1111/nph.12868]
100. Ova, E.A., U.B. Kutman, L. Ozturk and I. Cakmak. 2015. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil, 393(1-2): 147-162. [DOI:10.1007/s11104-015-2483-8]
101. Puschenreiter, M., B. Gruber, W.W. Wenzel, Y. Schindlegger, S. Hann, B. Spangl, W.D. Schenkeveld, S.M. Kraemer and E. Oburger. 2017. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environmental and Experimental Botany, 138: 67-76. [DOI:10.1016/j.envexpbot.2017.03.011]
102. Rashid, A. and E. Rafique. 1998. Micronutrients in Pakistani Agriculture: Significance and Use. Pakistan Agricultural Research Council: Islamabad, Pakistan.
103. Rasouli-Sadaghiani, M., B. Sadeghzadeh, E. Sepehr and Z. Rengel. 2011. Root exudation and Zn uptake by barley genotypes differing in Zn efficiency. Journal of Plant Nutrition, 34: 1120-1132. [DOI:10.1080/01904167.2011.558156]
104. Ratke, R.F., H.S. Pereira, J.D.D.G. dos Santos, J.J. Frazão, J.M. Barbosa and B. de Oliveira Dias. 2014. Root growth, nutrition and yield of maize with applied finely limestone in surface of cerrado soil. American Journal of Plant Sciences, 5(06): 834-844. [DOI:10.4236/ajps.2014.56097]
105. Reichheld, J.P., T. Vernoux, F. Lardon, M. Van Montagu and D. Inzé. 1999. Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. The Plant Journal, 17(6): 647-656. [DOI:10.1046/j.1365-313X.1999.00413.x]
106. Rengel, Z. 1995. Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. Journal of Plant Physiology, 147(2): 251-256. [DOI:10.1016/S0176-1617(11)81513-0]
107. Rengel, Z. 1995. Sulfhydryl groups in root-cell plasma membranes of wheat genotypes differing in Zn efficiency. Physiologia Plantarum, 95(4): 604-612. [DOI:10.1111/j.1399-3054.1995.tb05529.x]
108. Rengel, Z. 1999. Physiological mechanisms underlying differential nutrient efficiency of crop genotypes, in Mineral Nutrition of Crops: Fundamental Mechanisms and Implications, Z. Rengel, Editor. Food Products Press: New York. 227-265.
109. Rengel, Z. 2001. Genotypic differences in micronutrient use efficiency in crops. Communications in Soil Science and Plant Analysis, 32(7-8): 1163-1186. [DOI:10.1081/CSS-100104107]
110. Rengel, Z. and R.D. Graham. 1995. Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution: I Growth. Plant & Soil, 176(2): 307-316. [DOI:10.1007/BF00011795]
111. Rengel, Z. and R.D. Graham. 1995. Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution: II. Nutrient uptake. Plant and Soil, 176: 317-324. [DOI:10.1007/BF00011796]
112. Rengel, Z. and R.D. Graham. 1996. Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. Journal of Experimental Botany, 47: 217-226. [DOI:10.1093/jxb/47.2.217]
113. Rengel, Z., V. Roemheld, and H. Marschner. 1998. Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. Journal of Plant Physiology, 152(4-5): 433-438. [DOI:10.1016/S0176-1617(98)80260-5]
114. Rengel, Z. and M.S. Wheal. 1997. Herbicide chlorsulfuron decreases growth of fine roots and micronutrient uptake in wheat genotypes. Journal of Experimental Botany, 48: 927-934. [DOI:10.1093/jxb/48.4.927]
115. Römheld, V. and H. Marschner. 1991. Function of micronutrients in plants, in Micronutrients in Agriculture, J.J. Mortvedt, et al., Editors. Soil Science Society of America, Book Series No. 4, pp. 297-328: Madison, USA. 297-328. [DOI:10.2136/sssabookser4.2ed.c9]
116. Ruel, M.T. and H.E. Bouis. 1998. Plant breeding: A long-term strategy for the control of zinc deficiency in vulnerable populations. American Journal of Clinical Nutrition, 68: 488S-494S. [DOI:10.1093/ajcn/68.2.488S]
117. Sadeghzadeh, B. 2013. Genotypic variation in barley varieties and landraces to zinc accumulation under cold dryland condition. Dryland Agricultural Research Institute (DARI), Maragheh, Iran.
118. Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition, 13(4): 905-927. [DOI:10.4067/S0718-95162013005000072]
119. Sadeghzadeh, B., L. Ghodsizad, E. Sepehr, and F. Rahimzadeh Khoei. 2015. Genotypic variation to zinc accumulation and drought tolerance in barley genotypes, in International Conference on Applied Research in Agriculture: Tehran, Iran.
120. Sadeghzadeh, B. and Z. Rengel. 2011. Zinc in soils and crop nutrition, in The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, M.J. Hawkesford and P.B. Barraclough, Editors. Wiley. 335-375. [DOI:10.1002/9780470960707.ch16]
121. Sadeghzadeh, B., Z. Rengel and C. Li. 2008. Mapping of chromosome regions associated with seed Zn accumulation in barley, PhD thesis, in Faculty of Natural and Agricultural Sciences. The University of Western Australia: Perth.
122. Sadeghzadeh, B., Z. Rengel and C. Li. 2009. Differential zinc efficiency of barley genotypes grown in soil and chelator-buffered nutrient solution. Journal of Plant Nutrition, 32(10): 1744 - 1767. [DOI:10.1080/01904160903150974]
123. Safaya, N.M. 1976. Phosphorus-zinc interaction in relation to absorption rate of phosphorus, zinc, copper, manganese and iron in corn. Soil Science Society of America Journal, 40(5): 719-722. [DOI:10.2136/sssaj1976.03615995004000050031x]
124. Sairam, R.K. and D.C. Saxena. 2001. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1): 55-61. [DOI:10.1046/j.1439-037x.2000.00358.x]
125. Samarah, N., R. Mullen and S. Cianzio. 2004. Size distribution and mineral nutrients of soybean seeds in response to drought stress. Journal of Plant Nutrition, 27: 815-835. [DOI:10.1081/PLN-120030673]
126. Santa Maria, G.E. and D.H. Cogliatti. 1988. Bidirectional Zn-fluxes and compartmentation in wheat seedling roots. Journal of Plant Physiology, 132: 312-315. [DOI:10.1016/S0176-1617(88)80112-3]
127. Sasaki, H., T. Hirose, Y. Watanabe and R. Ohsugi. 1998. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiology, 118(3): 929-934. [DOI:10.1104/pp.118.3.929]
128. Schlegel, R. and I. Cakmak. 2012. Physical mapping of rye genes determining micronutritional efficiency in. in Plant Nutrition for Sustainable Food Production and Environment: Proceedings of the XIII International Plant Nutrition Colloquium, 13-19 September 1997, Tokyo, Japan. Springer Science & Business Media. [DOI:10.1007/978-94-009-0047-9_84]
129. Schuerger, A.C., G.A. Capelle, J.A.D. Benedetto, C. Mao, C.N. Thai, M.D. Evans, J.T. Richards, T.A. Blank and E.C. Stryjewski. 2003. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sensing of Environment, 84(4): 572-588. [DOI:10.1016/S0034-4257(02)00181-5]
130. Schwartz, S.M., R.M. Welch, D.L. Grunes, E.E. Cary, W.A. Norvell, M.D. Gilbert, M.P. Meridith and C.A. Sauchirico. 1987. Effect of zinc, phosphorus and root-zone temprature on nutrient uptake by barley. Soil Science Society of America Journal, 51: 371-375. [DOI:10.2136/sssaj1987.03615995005100020021x]
131. Sekimoto, H., M. Hoshi, T. Nomura and T. Yokota. 1997. Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant and Cell Physiology, 38(9): 1087-1090. [DOI:10.1093/oxfordjournals.pcp.a029276]
132. Selote, D.S., S. Bharti and R. Khanna-Chopra. 2004. Drought acclimation reduces O2*-accumulation and lipid peroxidation in wheat seedlings. Biochem. Biophys. Res. Commun, 314: 724-729. [DOI:10.1016/j.bbrc.2003.12.157]
133. Sharma, C.P., P.N. Sharma, S.S. Bisht and B.D. Nautiyal. 1982. Zinc deficiency induces changes in cabbage (Brassica oleracea var. Capitat), in Proceedings of the Ninth international Plant Nutrition Colloquium, A. Scaife, Editor. Commonwealth Agricultural Bureau, pp. 601-606: Warwick, England. 601-606.
134. Sharma, K.C., B.A. Krantz, A.L. Brown and J. Quick. 1968. Interaction of Zn and P in top and root of corn and tomato. Agronomy Journal, 60: 453-456. [DOI:10.2134/agronj1968.00021962006000050003x]
135. Sharma, K.N. and D.L. Deb. 1988. Effect of organic manuring on zinc diffusion in soils of varying texture. Journal of the Indian Society of Soil Science, 36: 219-224.
136. Sillanpää, M. 1982. Micronutrients and the nutrient status of soils: A global study, in FAO Soils Bulletin No. 48. Food and Agriculture Organization of the United Nations, pp. 75-82: Rome. 75-82.
137. Sillanpää, M. 1990. Micronutrient assessment at the country level: an international study, in FAO Soils Bulletin No. 63. Food and Agriculture Organisation of the United Nations: Rome.
138. Singh, B., S.K.A. Natesan, B.K. Singh and K. Usha. 2005. Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88(1): 36-44.
139. Singh, J.P., R.E. Karmanos and J.W.B. Stewart. 1988. The mechanism of phosphorus-induced zinc deficiency in beans (Phaseolus vulgaris L.). Canadian Journal of Soil Science, 68: 345-358. [DOI:10.4141/cjss88-032]
140. Solaiman, Z., P. Marschner, D. Wang and Z. Rengel. 2007. Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Biology and Fertility of Soils, 44(1): 143-153. [DOI:10.1007/s00374-007-0188-8]
141. Sparrow, D.H. and R.D. Graham. 1988. Susceptibility of zinc-deficient wheat plants to colonization by Fusarium graminearum Schw. Group I. Plant and Soil, 112: 261-266. [DOI:10.1007/BF02140004]
142. Ström, L., A.G. Owen, D.L. Godbold and D.L. Jones. 2005. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biology and Biochemistry, 37(11): 2046-2054. [DOI:10.1016/j.soilbio.2005.03.009]
143. Takkar, P.N. and C.D. Walker. 1993. The distribution and correction of zinc deficiency, in Zinc in Soils and Plants, A.D. Robson, Editor. Kluwer Academic Publishers, pp. 151-165: Dordrecht, The Netherlands. 151-165. [DOI:10.1007/978-94-011-0878-2_11]
144. Tehrani, M.M., M.R. Balali, F. Moshiri and A.M. Daryashenas. 2012. Fertilizer recommendation and forecast in Iran: Challenges and strategies. Iranian Journal of Soil Research, 26(2): 123-144 (In Persian).
145. Teixeira, R.d.K.S., D.C. Lima, Â.d.F.B. Abreu and M.A.P. Ramalho. 2015. Implications of early selection for grain colour on iron and zinc content and productivity of common bean. Plant Breeding, 134(2): 193-196. [DOI:10.1111/pbr.12241]
146. Tiller, K.G. 1983. Micronutrients, in In: Soils: An Australian Viewpoint. Division of Soils, CSIRO Melbourne, Academic Press, pp. 365-387: London. 365-387.
147. Treeby, M., H. Marschner and V. Römheld. 1989. Mobilization of iron and other mcronutrient cations from a calcareous soil by plant-borne, microbial and synthetic metal chelators. Plant and Soil, 114: 217-226. [DOI:10.1007/BF02220801]
148. Vallee, B.L. and K.H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiological Reviews, 73: 79-118. [DOI:10.1152/physrev.1993.73.1.79]
149. Viets, F.G. 1966. Zinc deficiency in the soil-plant system, in Zn Metabolism, A.S. Prasad, Editor. Charles C. Thomas, pp. 90-128: Illinois, USA. 90-128.
150. Wang, A.S., J.S. Angle, R.L. Chaney, T.A. Delorme, and R.D. Reeves. 2006. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281(1): 325-337. [DOI:10.1007/s11104-005-4642-9]
151. Waraich, E.A., R. Ahmad and M. Ashraf. 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6): 764-777.
152. Webb, E.C. 1992. Enzyme Nomenclature: Recommendations of the Nomenclature Committee of the International :union: of Biochemistry and Molecular Biology. Academic Press: New York, USA.
153. Welch, R.M. 1995. Micronutrient nutrition of plants. Critical Reviews in Plant Sciences, 14: 49-82. [DOI:10.1080/07352689509701922]
154. Welch, R.M. 1999. Importance of seed mineral nutrient reserves in crop growth and development, in Mineral Nutrition of Crops: Fundamental Mechanisms and Implications, Z. Rengel, Editor. Food Products Press, pp. 205-226: New York. 205-226.
155. Welch, R.M. and R.D. Graham. 1999. A new paradigm for world agriculture: meeting human needs productive, sustainable, nutritious. Field Crops Research, 60(1/2): 1-10. [DOI:10.1016/S0378-4290(98)00129-4]
156. Welch, R.M. and R.D. Graham. 2002. Breeding crops for enhanced micronutrient content. Plant and Soil, 245: 205-214. [DOI:10.1023/A:1020668100330]
157. Wenzel, A.A. and H. Mehlhorn. 1995. Zinc deficiency enhances ozone toxicity in bush beans (Phaseolus vulgaris L. cv. Saxa). Journal of Experimental Botany, 46(7): 867-872. [DOI:10.1093/jxb/46.7.867]
158. White, P.J., S.N. Whiting, A.J.M. Baker and M.R. Broadley. 2002. Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytologist, 153(2): 201-207. [DOI:10.1046/j.0028-646X.2001.00325.x]
159. WHO. 2002. The World Health Report 2002; Reducing Risks, Promoting Healthy Life. World Health Organization, pp. 1-168: Geneva, Switzerland.
160. Wissuwa, M., A.M. Ismail and S. Yanagihara. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology, 142: 731-741. [DOI:10.1104/pp.106.085225]
161. Zhang, F., V. Römheld and H. Marschner. 1989. Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing exudates. Z. Pflanzenernaehr. Bodenk, 152: 205-210. [DOI:10.1002/jpln.19891520211]
162. Zhang, F.S., V. Römheld, and H. Marschner. 1991. Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Science and Plant Nutrition, 37: 671-678. [DOI:10.1080/00380768.1991.10416935]
163. Zhang, W., D. Liu, C. Li, Z. Cui, X. Chen, Y. Russell and C. Zou. 2015. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crops Research, 184: 155-161. [DOI:10.1016/j.fcr.2015.10.002]
164. Zhu, Y.G., S.E. Smith and F.A. Smith. 2001. Zinc (Zn)-phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Annals of Botany, 88(5): 941-945. [DOI:10.1006/anbo.2001.1522]
165. Ziaeyan, A. and M.J. Malakooti. 1999. Effect of zinc sulfate on wheat growth and yield in calcareous soils in Fars provice. Journal Of Water and Soil, 12(6): 99-110 (In Persian).
166. Zubaidi, A., G.K. McDonald and G.J. Hollamby. 1999. Nutrient uptake and distribution by bread and durum wheat under drought conditions in South Australia. Australian Journal of Experimental Agriculture, 39(6): 721-732. [DOI:10.1071/EA98185]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.