Volume 9, Issue 23 (12-2017)                   jcb 2017, 9(23): 125-137 | Back to browse issues page


XML Persian Abstract Print


Sari Agricultural Sciences and Natural Resources University
Abstract:   (3740 Views)
      Salt stress is one of the main abiotic stresses for rice that causes negative effects on its growth and productivity. In present study, effects of salt stress on differential gene expression of some genes which are responsible in salt stress were investigated in two rice tolerant and sensitive genotypes (FL478 and IR29) by applying cDNA-AFLP technique. Among the TDFs (Transcript Derived Fragments (were generated by 2 restriction enzymes and 18 primer combination that displayed up-regulation expression in tolerant line with respect to the control treatment and sensitive line in response to salt stress, 28 TDF were separated and 21 of them were cloned, sequenced and submitted in gene bank and finally they were analyzed by BLAST algorithm. All known TDFs in current study were belonged to different groups of genes related to metabolism, signal transduction, transcription factors, detoxification, transport system and other mechanism related to salt stress which suggests a lot of process to be involved in salt stress responses. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR. The results of real-time PCR confirmed the expression patterns that were detected using the cDNA-AFLP technique. The results of this research show that cDNA-AFLP is a powerful technique for investigating the expression pattern of rice genes under salt stress. Moreover our finding will help either elucidation the molecular basis of salt stress effects on rice rice or identification those genes that could increase the salt tolerance of rice plant.
Full-Text [PDF 843 kb]   (1634 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/12/23 | Revised: 2019/04/14 | Accepted: 2017/12/23 | Published: 2017/12/23

References
1. Akihiro, T., T. Umezawa, C. Ueki, B.M. Lobna., K. Mizuno, M. Ohata and T. Fujimura. 2006. Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Letters, 580: 5947-5952. [DOI:10.1016/j.febslet.2006.09.065]
2. Anderson, J.V. and D.G. Davis. 2004. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologica Plantarum, 120: 421-433. [DOI:10.1111/j.0031-9317.2004.00249.x]
3. Bachem, C.W.B., R.S. Hoeven, S.M. Bruijn, D. Vreugdenhil, M. Zabeau and R.G.F. Visser. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant Journal, 9: 745-53. [DOI:10.1046/j.1365-313X.1996.9050745.x]
4. Bianchi, M.W., C. Roux and N. Vartanian. 2002. Drought regulation of GST8, encodes the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiologica Plantarum, 116: 96-105. [DOI:10.1034/j.1399-3054.2002.1160112.x]
5. Chen, J.H., H.W. Jiang, E.J. Hsieh, H.Y. Chen, C.T. Chien, H. Lhsieh and T.P. Lin. 2012. Drought and salt stress tolerance of an Arabidopsis Glutathione S -Transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology, 158: 340-351. [DOI:10.1104/pp.111.181875]
6. Chen, W., N.J. Provart, J. Glazebrook, F. Katagiri, H.S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou, S.A. Whitham, P.R. Budworth, Y. Tao, X. Xie, X. Chen, S. Lam, J.A. Kreps, J.F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J.L. Dangl, X. Wang and T. Zhu. .2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 14: 559-574. [DOI:10.1105/tpc.010410]
7. Chi, W., J.H. Yang, N.H. Wu and F. Zhang. 2004. Four rice genes encoding NADP-ME exhibit distinct expression profiles. Bioscience, Biotechnology and Biochemistry, 68: 1865-1874. [DOI:10.1271/bbb.68.1865]
8. Ciuzan, O., J. Hancock, D. Pamfil, I. Wilson and M. Ladomery. 2015. The evolutionarily conserved multi-functional glycine-rich RNA-binding proteins play key roles in development and stress adaptation. Physiologica Plantarum, 153: 1-11. [DOI:10.1111/ppl.12286]
9. Cordin, O., J. Banroques, N.K. Tanner and P. Linder. 2006. The DEAD-box protein family of RNA helicases. Gene, 367: 17-37. [DOI:10.1016/j.gene.2005.10.019]
10. Das, S., R. Basu and B. Ghosh. 1987. Heat stress induced polyamine accumulation in cereal seedlings. Plant Physiology and Biochemistry, 14: 108-116.
11. Davies, D.D. 1986. The fine control of cytosolic pH. Physiology of Plant, 67: 702-706. [DOI:10.1111/j.1399-3054.1986.tb05081.x]
12. Dinari, A., A. Niazi, A.R. Afsharifar and A. Ramezani. 2013. Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. PLOS One, 8: 527-533. [DOI:10.1371/journal.pone.0052757]
13. Dreyfuss, G., V.N. Kim and N. Kataoka. 2002. Messenger-RNA-binding proteins and and the messages they carry. Nature Reviews Molecular Cell Biology, 3: 195-205. [DOI:10.1038/nrm760]
14. Dubouzet, J.G., Y. Sakuma, Y. Ito, M. Kasuga, E.G. Dubouzet, S. Miura, M. Seki, K. Shinozaki and K. Yamaguchi-Shinozaki. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant Journal, 33: 751-63. [DOI:10.1046/j.1365-313X.2003.01661.x]
15. Felle, H.H. 2001. PH: signal and messenger in plant cells. Plant Biology, 3: 577-591. [DOI:10.1055/s-2001-19372]
16. Fushimi, T., M. Umeda, T. Shimazaki, A. Kato, K. Toriyama and H. Uchimiya. 1994. Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent malic enzyme. Plant Molecular Biology, 24: 965-967. [DOI:10.1007/BF00014450]
17. Gong, X., M. Liu, L. Zhang, Y. Ruan, R. Ding, Y. Ji, N. Zhang, S. Zhang, J. Farmer and C. Wang. 2015. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiologia Plantarum, 153: 119-136. [DOI:10.1111/ppl.12225]
18. Ibraheem, O., G. Dealtry, S. Roux and G. Bradley. 2011. The effect of drought and salinity on the expressional levels of sucrose transporters in rice (Oryza sativa Nipponbare) cultivar plants. Plant Omics Journal, 4: 68-74.
19. Jha, B., A. Sharma and A. Mishra. 2011. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Molecular Biology Reports, 38: 4823-4832. [DOI:10.1007/s11033-010-0625-x]
20. Ji, W., Y. Zhu, Y. Li, L. Yang, X. Zhao, H. Cai and X. Bai. 2010. Over-expression of a glutathione
21. S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 32: 1173-1179. [DOI:10.1007/s10529-010-0269-x]
22. Kawasaki, S., C. Borchert, M. Deyholos, H. Wang, S. Brazilles, K. Kawai, D. Galbraith and H. J. Bohnert. 2001. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13: 889-905. [DOI:10.1105/tpc.13.4.889]
23. Kawousi. 2001. Effect of different nitrogen and potassium levels on rice yield. Rasht research deputy, 24 pp (In Persian).
24. Kreps, J.A., Y. Wu, H.S. Chang, T. Zhu, X. Wang and J.F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130: 2129-41. [DOI:10.1104/pp.008532]
25. Krishna, R. and K.A. Bhagwat. 1989. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 91: 500-504. [DOI:10.1104/pp.91.2.500]
26. Kumar, V., V. Shriram, T.D. Nikam, N. Jawali and M.G. Shitole. 2008. Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. Journal of Plant Nutrition, 31: 1999-2017. [DOI:10.1080/01904160802403466]
27. Li, T., E. Evdokimov, R.F. Shen, C.C. Chao, E. Tekle, T. Wang, E.R. Stadtman, D.C. Yang and P.B. Chock. 2004. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins and nuclear pore complex proteins: A proteomic analysis. Proceedings of the National Academy of Sciences, 101: 8551-8556. [DOI:10.1073/pnas.0402889101]
28. Liu, S., Y. Cheng, X. Zhang, Q. Guan, S. Nishiuchi, K. Hase and T. Takano. 2007. Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Molecular Biology, 64: 49-58. [DOI:10.1007/s11103-007-9133-3]
29. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262]
30. Mannas, K.C., S. Gupta, D.N. Sengupta and B. Ghosh. 1997. Expression of arginine decarboxylase in seedling of indica rice (Oryza sativa L.) cultivars affected by salinity stress. Plant Molecular Biology, 34: 477-483. [DOI:10.1023/A:1005802320672]
31. Munnik, T., W. Ligterink, I. Meskiene, O. Calderini, J. Beyerly, A. Musgrave and H. Hirt. 1999. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant Journal, 20: 381-388. [DOI:10.1046/j.1365-313x.1999.00610.x]
32. Marrs, K.A. 1996. The functions and regulation of glutathione s-transferases in plants. Annual Review of Plant Physiology, 1996. 47: 127-58. [DOI:10.1146/annurev.arplant.47.1.127]
33. Martinoia, E. and D. Rentsch. 1994. Malate compartmentation: responses to a complex metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 45: 447-467. [DOI:10.1146/annurev.pp.45.060194.002311]
34. McNeil, S.D., M.L. Nuccio, M.J. Ziemak and A.D. Hanson. 2001. Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase Proceeding of National Academy Science, 98: 10001-10005. [DOI:10.1073/pnas.171228998]
35. Moller, I.M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 561-591. [DOI:10.1146/annurev.arplant.52.1.561]
36. Moller, I.M. and A.G. Rasmusson. 1998. The role of NADP in the mitochondrial matrix. Trends in Plant Science, 3: 21-27. [DOI:10.1016/S1360-1385(97)01156-4]
37. Mou, Z., X. Wang, Z. Fu, Y. Dai, C. Han, J. Ouyang, F. Bao, Y. Hu and J. Li. 2002. Silencing of phosphoethanolamine N- methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. The Plant Cell, 14: 2031-2043. [DOI:10.1105/tpc.001701]
38. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell and Environment, 25: 239-250. [DOI:10.1046/j.0016-8025.2001.00808.x]
39. Munnik, T., W. Ligterink, I. Meskiene, O. Calderini, J. Beyerly, A. Musgrave and H. Hirt. 1999. Distinct osmo-sensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress. Plant Journal, 20: 381-388. [DOI:10.1046/j.1365-313x.1999.00610.x]
40. Owttrim, G.W. 2006. RNA helicases and abiotic stress. Nucleic Acids Research, 1: 3220-3230. [DOI:10.1093/nar/gkl408]
41. Pessarakli, M and I. Szabolcs. 1999. Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pages: 3-21. [DOI:10.1201/9781351104609-1]
42. Pham, X.H., M.K. Reddy, N.Z. Ehtesham, B. Matta and N. Tuteja. 2000. A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant Journal, 24: 219-229. [DOI:10.1046/j.1365-313x.2000.00869.x]
43. Priebe, A. and H.I. Jagar. 1978. Effect of NaCl on the levels of putrescine and related polyamines in plants differing in salt tolerance. Plant Science Letters, 12: 365-369. [DOI:10.1016/0304-4211(78)90092-5]
44. Rodríguez, M., M.C. González, E. Cristo, O. Oliva, M. Pujol and O. Borrás-Hidalgo. 2013. Identification of genes with altered expression levels in contrasting rice cultivars exposed to salt stress treatments. Biotecnología Aplicada, 30: 178-181.
45. Shavrukov, Y. 2013. Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany, 64: 119-127. [DOI:10.1093/jxb/ers316]
46. Sinah, A.K., M. Jaggi, B. Raghuram and N. Tuteja. 2011. Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling and Behavior, 6: 196-203. [DOI:10.4161/psb.6.2.14701]
47. Smith, T.A. 1973. Amine levels in mineral deficient Hordeum vulgare leaves. Phytochemistry, 12: 2093-2100. [DOI:10.1016/0031-9422(73)85106-4]
48. Song, Y., Z. Wang, W. Bo, Y. Ren, Z. Zhang and D. Zhang. 2012. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics, 13: 286-304. [DOI:10.1186/1471-2164-13-286]
49. Summers, P. and E.A. Weretilnyk. 1993. Choline synthesis in spinach in relation to salt stress. Plant Physiology, 103: 1269-1276. [DOI:10.1104/pp.103.4.1269]
50. Tabor, C.W. and H. Tabor. 1984. Polyamines. Annual Review of Biochemistry, 53: 749-790. [DOI:10.1146/annurev.biochem.53.1.749]
51. Turner, L.B. and G.R. Stewart. 1986. The effect of water stress upon polyamine levels in barley (Hordeum vulgare L.) leaves. Journal of Experimental Botany, 37: 170-177. [DOI:10.1093/jxb/37.2.170]
52. Verslues, P.E., M.A. Garwal, S. Katiyar-Agarwal, J. Zhu and J.K. Zhu. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 45: 523-539. [DOI:10.1111/j.1365-313X.2005.02593.x]
53. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman and M. Kuiper. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414. [DOI:10.1093/nar/23.21.4407]
54. Wang, X., W. Liu, X. Chen, C. Tang, Y. Dong, J. Ma, X. Huang, G. Wei, Q. Han, L. Huang and Z. Kang. 2010. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 10: 1-15. [DOI:10.1186/1471-2229-10-9]
55. Weretilnyk, E.A., D.D. Smith, G.A. Wilch and P.S. Summers. 1995. Enzymes of Cho synthesis in spinach: Response of P-base N-methyltransferase activities to light and salinity. Plant Physiology, 109: 1085-1091. [DOI:10.1104/pp.109.3.1085]
56. Xu, D., X. Duan, B. Wang, B. Hong, T. Ho and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110: 249-257. [DOI:10.1104/pp.110.1.249]
57. Zheng, L., M.C. Shannon and S.M. Lesch. 2001. Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48: 191-206. [DOI:10.1016/S0378-3774(00)00146-3]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.