Volume 9, Issue 23 (12-2017)                   jcb 2017, 9(23): 67-75 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaedrahmati M, Hossein Pour T, Ahmadi A. (2017). Study of Grain Yield Stability of Durum Wheat Genotypes using AMMI. jcb. 9(23), 67-75. doi:10.29252/jcb.9.23.67
URL: http://jcb.sanru.ac.ir/article-1-875-en.html
Seed and Plant improvement Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO) Khorramabad, Iran
Abstract:   (3915 Views)
In order to determine yield stability of 20 durum wheat genotypes, a trial was carried as randomized complete block design with four replications in four years during  2009- 2014 in Sarab-Changae station of Khorramabad, Iran. Analysis of combine variance showed that environment, genotype and genotype × environment interaction were significant at 1% probability level. Variance analysis of additive main effects and multiplicative (AMMI) showed that two IPCAs were significant at 1% probability level. Also, AMMI stability value (ASV) was used for simultaneously using information obtained from two significant components of AMMI. According to ASV index, genotypes G2, G12, G14 and G19 had the lowest ASV value and were known as the most stable genotypes. Genotype G9 had the highest ASV value and distance from the center of Bi-plot. Therefore, it was known as stable genotype. Also, Genotype G9 had the highest grain yield. Using cluster analysis of genotypes based on ASV, genotypes divided to three groups that genotypes of each group were similar as stable. 
Full-Text [PDF 769 kb]   (1543 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/12/23 | Revised: 2019/04/14 | Accepted: 2017/12/23 | Published: 2017/12/23

References
1. Abay, F. and A. Bjørnstad. 2009. Specific adaptation of barley varieties in different locations in ethiopia. Euphytica, 167: 181-195. [DOI:10.1007/s10681-008-9858-3]
2. Aghae Sarbarzeh, M., M. Dastfal, H. Farzadi, B. Andarzian, A. Shahbaz Pour Shahbazi, M. Bahari and H. Rostami. 2012. Evaluation of durum wheat genotypes for yield and yield stability in warm and dry areas of Iran. Iranian Journal of Crop Sciences, 28: 315-325 (In Persian).
3. Alwala, S., T. Kwolek, M. McPherson, J. Pellow and D. Meyer. 2010. A Comprehensive comparison between Eberhart and Russell joint regression and GGE biplot analyses to identify stable and high yielding maize hybrids. Field Crops Research, 119: 225-230. [DOI:10.1016/j.fcr.2010.07.010]
4. Annicchiarico, P., F. Bellah and T. Chiari. 2005. Defining sub regions and estimating benefits for a specific-adaptation strategy by breeding programs: a case study. Crop Science, 45: 1741-1749. [DOI:10.2135/cropsci2004.0524]
5. Annicchiarico, P., N. Harzic and A.M. Carroni. 2010. Adaptation, diversity, and exploitation of global white Lupin (Lupinus albus L.) Landrace Genetic Resources. Field Crops Research, 119: 114-124. [DOI:10.1016/j.fcr.2010.06.022]
6. Araus, J.L., G.A. Slafer, M.P. Reynolds and C. Royo. 2002. Plant breeding and drought in C3 cereals: what should we breed for? Annals Botany, 89: 925-940. [DOI:10.1093/aob/mcf049]
7. Araus, J.L., G. Slafer, C. Royo and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences, 27: 377-412. [DOI:10.1080/07352680802467736]
8. Becker, H.C. and J. Leon. 1988. Stability analysis in plant breeding. Plant Breeding, 101: 1-23. [DOI:10.1111/j.1439-0523.1988.tb00261.x]
9. Cattivelli, L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Mare, A. Tondelli and A.M. Stanca. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomic. Field Crops Research, 15: 1-14. [DOI:10.1016/j.fcr.2007.07.004]
10. De Vita, P., A.M. Mastrangelo, L. Matteu, E. Mazzucotelli, N. Virzi, M. Palumbo, M.L. Storto, F. Rizza and L. Cattivelli. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Research, 119: 68-77. [DOI:10.1016/j.fcr.2010.06.016]
11. Dehghani, H., N. Sabaghnia and M. Moghaddam. 2009. Interpretation of genotype-by-environment interaction for late maize hybrids' grain yield using a biplot method. Turkish Journal of Agriculture and Forestry, 333: 139-148.
12. Ebdon, J.S. and H.G. Gauch. 2002. Additive main effect and multiplicative interaction analysis of national turf grass performance trials: II. Cultivar recommendations. Crop Science, 42: 497-506. [DOI:10.2135/cropsci2002.0497]
13. Farshadfar, E. and J. Sutka. 2006. Biplot analysis of genotype-environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica, 54: 459-467. [DOI:10.1556/AAgr.54.2006.4.8]
14. Farshadfar, E., N. Mahmodi and A. Yaghotipoor. 2011. AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5: 1837-1844.
15. Fufa, H., P.S. Baenziger, B.S. Beecher, R.A. Graybosch and K.M. Eskridge. 2005. Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica, 144: 187-198. [DOI:10.1007/s10681-005-5811-x]
16. Gauch, H.G. 1992. Statistical analysis of regional yield trials: AMMI Analysis of Factorial Designs. Elsevier Science Publishers, Amsterdam, The Netherlands, 278 pp.
17. Ghodrati-Niari, F. and R. Abdolshahi. 2014. Evaluation of yield stability of 40 bread wheat (Triticum aestivum L.) genotypes using additive main effects and multiplicative interaction (AMMI). Iranian Journal of Crop Sciences, 16: 322-333 (In Persian).
18. Haji Mohammad Ali Jahromi, M., M. Khodarahmi, A.R. Mohammadi and A. Mohammadi. 2011. Stability analysis for grain yield of promising durum wheat genotypes in Southern warm and dry agro-climatic zone of Iran. Iranian Journal of Crop Sciences, 13: 565-579 (In Persian).
19. Kandus, M., D. Almorza, R. Boggio Ronceros and J.C. Salerno. 2010. Statistical models for evaluating the genotype-environment interaction in maize. International Journal of Experimental Botany, 79: 39-46.
20. Karimizadeh, R.A., M. Mohammadi, M. Sheykhmamo, V. Bavi, T. Hossein pour, H. Khanzadeh, H. Ghojogh and M. Armeiun. 2012. Methods application of cluster and AMMI analysis for evalution of grain yield stability of durum wheat genotypes under rain-fed regions of Iran. New genetic, 6: 33-48 (In Persian).
21. Katsura, K., Y. Tsujimoto, M. Oda, K.I. Matsushima, B. Inusah, W. Dogbe and J.I. Sakagami. 2016. Genotype-by-environments interaction analysis of rice (oryza spp) yield in a flood plain ecosystem in West Africa. European Journal of Agronomy, 73: 152-159. [DOI:10.1016/j.eja.2015.11.014]
22. Koocheki, A.R., B. Sorkhi and M.R. Eslamzadeh Herasi. 2013. Study on stability of Elite Barley (Hordeum Vulgare L.) genotypes for cold regions of Iran using AMMI method. Cereal Research, 2: 249-261(In Persian).
23. Latiri, K., J.P. Lhomme, M. Annabi and T.L. Setter. 2010. Wheat production in Tunisia: progress, inter-annual variability and relation to rainfall. European Journal of Agronomy, 33: 33-42. [DOI:10.1016/j.eja.2010.02.004]
24. Lin, C.S. and M.R. Binns. 1991. Genetic properties of four types of stability parameter. Theoretical Applied Genetic, 82: 505-509. [DOI:10.1007/BF00588606]
25. Loss, S.P. and K.H.M. Siddique. 1994. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Advances in Agronomy, 52: 229-276. [DOI:10.1016/S0065-2113(08)60625-2]
26. Messina, C.D., D. Podlich, Z. Dong, M. Samples and M. Cooper. 2011. Yield trait performance landscapes: from theory to application in breeding maize for drought tolerance. Journal of Experimental Botany, 62: 855-868. [DOI:10.1093/jxb/erq329]
27. Mir, R.R., M. Zaman-Allah, N. Sreenivasulu, R. Trethowan and R.K. Varshney. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical Applied Genetic, 125: 625-645. [DOI:10.1007/s00122-012-1904-9]
28. Mohammadi, R., M. Armeiun and M.M. Ahmadi. 2011. Genotype × environment interactions for grain yield of durum wheat genotypes using AMMI model. Seed Plant Improvement Journal, 27: 183-198 (In Persian).
29. Mohammadi, R., E. Farshadfar and A. Amir. 2015. Interpreting genotype environment interactions for grain yield of rain-fed durum wheat in Iran. The Crop Journal, 8-10-pp. [DOI:10.1016/j.cj.2015.08.003]
30. Mosavian, M.H., A. Yazdansepas, A. Amini, M.R. Bihamta and M.J. Haji Alyan. 2013. Study of morpho-physiologic traits and grain yield stability of promising genotypes of winter and facultative bread wheat for cold regions of Iran. Iranian Journal of Field Crop Science, 43: 447-459 (In Persian).
31. Mortazavian, S.M.M., H.R. Nikkhah, F.A. Hassani, M. Sharif- Al- Hosseini, M. Taheri and M. Mahlooji. 2014. GGE biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultural Science and Technology, 16: 609-622.
32. Nachit, M.M., M.E. Sorrells, R.W. Zobel, H.G. Gauch, R.A. Fischer and W.R. Coffman. 1992. Association of environmental variables with sites' mean grain yield and components of genotype-environment interaction in durum wheat. Journal of Plant Breeding and Genetics, 46: 369-372.
33. Pourdad, S.S. and M. Jamshid Moghaddam. 2013. Study on genotype × environment interaction through GGE biplot for seed yield in spring rapeseed (Brassica Nupus L.) in rainfed condition. Journal of Crop Breeding, 5(12): 1-14.
34. Rharrabti, Y., D. Villegas, C. Royo, V. Martos-Nunez and L.F. García Del Moral. 2003. Durum quality in Mediterranean environments II. Influence of climatic variable sand relationships between quality parameters. Field Crops Research, 80: 133-140 [DOI:10.1016/S0378-4290(02)00177-6]
35. Roostae, M., R. Mohammadi and A. Amri. 2014. Rank correlation among different statistical models in ranking of winter wheat genotypes. The Crop Journal, 2: 154-163. [DOI:10.1016/j.cj.2014.02.002]
36. Safavi, S. M. and S. Bahraminejad. 2017. The evaluation of genotype × environment interactions for grain yield of oat genotypes using AMMI model. Journal of Crop Breeding, 9(22): 125-132.
37. Schulthess, A., I. Matus and A.R. Schwember. 2013. Genotypic and environmental factors and their interactions determine semolina color of elite genotype of durum wheat (Triticum turgidum L. var. durum) grown in different environments of Chile. Field Crops Research, 149: 234-244. [DOI:10.1016/j.fcr.2013.05.001]
38. Singh, R.P. and R.M. Trethowan. 2007. Breeding spring bread wheat for irrigated and rain-fed production systems of the developing world. In: Kang, M.S., P. M. Priyadarshan (eds.), Breeding Major Food Staples. Blackwell Publishing, Oxford, pp: 109-139.
39. Subira, J., F. Alvaro, L.F. Garcia Del Moral and C. Royo. 2015. Breeding effects on the cultivar × environment interaction of durum wheat yield. European Journal of Agronomy, 68: 78-88. [DOI:10.1016/j.eja.2015.04.009]
40. Trethowan, R.M., M. Van Ginkel and S. Rajaram. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Science, 42: 1441-1446. [DOI:10.2135/cropsci2002.1441]
41. Yan, W. and M. Kang. 2003. GGE Biplot Analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL, 288 pp. [DOI:10.1201/9781420040371]
42. Zali, H., S.S. Sabagh Pour, A.A. Farshadfar and P. Pezeshk Pour. 2009. Stability analysis of chickpea genotypes using ASV parameter and compared with some methods of stability analysis. Iranian Journal of Crop Sciences, 2: 21-29 (In Persian).

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb