Volume 9, Issue 23 (12-2017)                   jcb 2017, 9(23): 35-43 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bouchani A, Tahmasebi Z, Rahaie Jahromi M. (2017). Expression of Defensive Genes Responsible for Direct and Indirect Defense Against Spider Mite Tetranychus urticae in Black Bean. jcb. 9(23), 35-43. doi:10.29252/jcb.9.23.35
URL: http://jcb.sanru.ac.ir/article-1-872-en.html
Ilam University
Abstract:   (3361 Views)
Black bean genotypes have high resistance to the important pests and diseases of common bean. To evaluate the effectiveness of four genes in the direct (plant negatively effects on biology and reproduction of herbivore by its physical and biochemical barriers) and or indirect)by attracting natural enemies of herbivores(in black beans against two spotted spider mite, expression levels of these genes (Pathogenesis-Related Protein3 (pr3))Pathogenesis-Related Protein4، Lipoxygenase(pr4), Lipoxygenase (lox) and  β-Ocimen Synthase(os() in two resistant black bean genotypes (KS1179  and  KS 1115(( and susceptible control (Khomeini) before and after infection were determined by QRT-PCR technique. Based on the results of the study in all genotypes the gene expression of pr3 and PR4 involved in the direct defense, unregulated, although this increase in black bean genotypes was intensive than genotype Khomeini. Expression of os gene involved in indirect defense significantly increased in one of black bean genotypes (KS1179) however, the expression of this gene in another genotype of black beans and Khomeini did not change after the mite infestation. lox gene, which is involved in the direct and indirect defenses in both black bean genotypes after infection were significantly increased and decreased in Khomeini. Given that inhibition of lox genes in plant defense, can effect negatively on both direct and indirect defense. Thus, our results demonstrate on the importance of further study of this gene to increase resistance to spider mite in black bean. 
Full-Text [PDF 973 kb]   (1124 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/12/19 | Revised: 2019/04/14 | Accepted: 2017/12/19 | Published: 2017/12/19

References
1. Arimura, G., S. Köpke, M. Kunert, V. Volpe, A. David, P. Brand, P. Dabrowska, M. Maffei and W. Boland. 2008. Effects of feeding Spodoptera littoralis on lima bean Leaves IV: diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiology, 146: 965-973. [DOI:10.1104/pp.107.111088]
2. Arimura, G., C. Kost and W. Boland. 2005. Herbivore-induced, indirect plant defenses. Biochimica et Biophysica Acta, pp: 91-111. [DOI:10.1016/j.bbalip.2005.03.001]
3. Arimura G., R. Ozawa, R. Kugimiya, J. Takabayashi and J. Bohlman. 2004. Herbivore-induced defense response in model legume.two-spotted spider mites induced emission of (E)-β-Ocimene and transcript accumation of (E)-β-Ocimene synthase in Lotus japonicus. Plant physiology, 135: 1976-1983. [DOI:10.1104/pp.104.042929]
4. Arimura, G., R. Ozawa, T. Shimoda, T. Nishioka, W. Boland and J. Takabayashi. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves, Nature, 406: 512-514. [DOI:10.1038/35020072]
5. Baldwin, I.T. and C.A. Preston.1999. The eco-physiological complexity of plant responses to insect herbivores. Planta, 208: 137-145. [DOI:10.1007/s004250050543]
6. Bruinsma, M., S. Broekhoven, E.H. Poelman, M.A. Posthumus, M.J. Müller, J.J.A. Loon and M. Dicke. 2010. Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia, 162: 393-404. [DOI:10.1007/s00442-009-1459-x]
7. Correa, V. 1988. Pathogenic variation, production of toxic metabolites, and isoenzyme analysis in Phaeoisariopsis griseola (Sacc). Ferr. PhD. disseration Michigan State University, East Lansing, MI, 154 pp.
8. Dicke, M., R.M.P. Poecke and J.G. Boer. 2003. Inducible indirect defense of plants: from mechanisms to ecological functions. Basic Applied Ecology, 4: 27-42. [DOI:10.1078/1439-1791-00131]
9. Dicke, M., M.W. Sabelis, J. Takabayashi, J. Bruin and M.A. Posthumus. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. Journal of Chemical Ecology, 16: 3901-3118. [DOI:10.1007/BF00979614]
10. Dicke, M. and L.E.M. Vet. 1999. Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore In herbivores: between plants and predators: Journal of Chemical Ecology, 16: 381-396.
11. Dicke, M. 1994. Local and systemic production of volatile herbivore induced terpenoids: Their role in plant-carnivore mutualism. Journal of Plant Physiology, 143: 465-472. [DOI:10.1016/S0176-1617(11)81808-0]
12. Ebrahimi, M., M.R. Bihamta, A.H. Hoseinzade, M. Golbashy and F. Khialparast. 2009. A Study of Agronomy and Morphologic Traits of White Bean Genotypes Using Multivariate Analysis. Journal of Crop Breeding, 1(3): 1-13 (In Persian).
13. Fernandes, A.C., W. Nishida and R.P. Costa Proenc. 2010. Influence of soaking on the nutritional quality of common beans (Phaseolus vulgaris L.) cooked with or without the soaking water: a review. International Journal of Food Science and Technology, 45: 2209-2218. [DOI:10.1111/j.1365-2621.2010.02395.x]
14. Halitschke, R. and I.T. Baldwin. 2003. Antisense lox expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant Journal, 36: 794-807. [DOI:10.1046/j.1365-313X.2003.01921.x]
15. Halitschke, R., A. Kessler, J. Kahli, A. Lorenz and I.T. Baldwin. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia, 124: 408-417. [DOI:10.1007/s004420000389]
16. Isla, F.M.A., J. Rengifo, R.J. Redden, K.E. Basford and S.E. Beebe. 2003. Association between Seed Coat Polyphenolics (Tannins) and Disease Resistance in Common Bean. Plant Foods for Human Nutrition, 58: 285-297. [DOI:10.1023/B:QUAL.0000040283.51023.c2]
17. Jara, B., A. Acosta and C. Cardona. 1991. Efecto de cinco variedades de frijol sobre la biologia y la fecondidad de la aranita roja, Tetranychus desertorum Banks (Acari, Tetranychidae). Rev. Colomb. Entomol, 7: 33-39.
18. Kessler, A., R. Halitschke and I.T. Baldwin. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science, 305: 665-668. [DOI:10.1126/science.1096931]
19. Kahl, J., D.H. Siemens, R.J. Aerts, R. Gabler, F. Kuhnemann, C.A. Preston and I.T. Baldwin. 2000. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta, 210: 336-342. [DOI:10.1007/PL00008142]
20. Krips, O.E., P.E.L. Willems, R. Gols, M.A. Posthumus, G. Gort and M. Dicke. 2001. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. Journal of Chemical Ecology, 27: 1355-1372. [DOI:10.1023/A:1010313209119]
21. Libault, M., S. Thibivilliers, O. Radwan, S.J. Clough and G. Stacey. 2008. Identification of four soybean reference genes for gene expression normalization. The plant Genome, 1: 44-54. [DOI:10.3835/plantgenome2008.02.0091]
22. Menezes, J.R. and J.C. Dianese. 1988. Race characterization of Brazilian isolates of Colletotrichum lindemuthianum and detection of resistance to anthracnose in Phaseolus vulgaris. Phytopathology, 78: 650-655. [DOI:10.1094/Phyto-78-650]
23. McFarlane, J.S. and G.M. Rieman. 1983. Leaf hooper resistance among the bean varieties. J. Econ. Entomol, 36: 639 pp. [DOI:10.1093/jee/36.4.639]
24. Miklas, P.N., J.R. Smith, A. Hang, K.F. Grafton, J.D. Kelly. 2000. Release of navy and black bean germplasm lines with resistance to common bacterial blight. Annual Report of the Bean Improvement Cooperative, 44: 181-182.
25. Pereira J.A., I. Oliveira, A. Sousa, P. Valento, P.B. Andrade, I.C.F.R. Ferreira, F. Ferreres, A. Bento, R. Seabra and L. Estevinho. 2007. Walnut (Juglans regia L.) leaves: phenolic compounds, antimicrobial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 45: 2287-2295. [DOI:10.1016/j.fct.2007.06.004]
26. Saedi, Z. and S. Arbabi. 2007. Effectiveness of 12 pesticides against two infestation levels of bean fields by Tetranychus urticae Koch in Lordegan, Chaharmahal & Bakhtiari province. Pajouhesh and Sazandegi, 76: 25-31 (In Persian).
27. Salinas-Moreno, Y., L. Rojas-Herrera, E. Sosa-Montes and P. Pe'rez-Herrera. 2005. Anthocyanin composition in black bean varieties grown in Mexico. Agrociencia, 39: 385-394.
28. Shafiee Khorshidi, M., M.R. Bihamta, F. Khialparast and M.R. Naghavi.2012. Assessment of Genetic Variation in Common Bean (Phaseolus vulgaris L.) Genotypes under Drought Condition Using Cluster and Canonical Discriminant Analysis (CDA). Journal of Crop Breeding, 10: 1-17 (In Persian).
29. Tahmasebi, Z., A.H. Hosein Zadeh, M.R. Bihamta, M.R. Naghavi, A. Saboori, H.R. Dorri and M.S. Koshki. 2011. An investigation on resistance of 19 common bean genotypes to two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), in three regions of Iran. Journal of Entomolology Society of Iran, 30: 69-78 (In Persian).
30. Tahmasebi, Z., H. Mohammadi, G. Arimura, A. Muroi and M. Kant. 2014. Herbivore-induced indirect defence across beans cultivars is independent of their degree of direct resistance. Experimental and Applied Acarology, 63: 217-39. [DOI:10.1007/s10493-014-9770-6]
31. Thibivilliers, S., T. Joshi, K.B. Campbell, B. Scheffler, D. Xu, B. Cooper, H.T. Nguyen and G. Stacey. 2008. Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon Uromyces appendiculatus infection. BMC Plant Biology, 9: 46-59. [DOI:10.1186/1471-2229-9-46]
32. Turlings T.C.J., J.H. Tumlinson and W.J. Lewis. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 250: 1251-1253. [DOI:10.1126/science.250.4985.1251]
33. Wang, S., KA. Meckling and MF. Marcone. 2011. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacity. J Agric Food Chem, 59: 960-8. [DOI:10.1021/jf1040977]
34. Xina, C., H. Volkaert, P. Chatwachirawong and P. Srinives. 2010. Molecular cloning and expression analysis of the pathogenesis-related gene VaPR2 in azuki bean (Vigna angularis). Science Asia, 36: 72-75. [DOI:10.2306/scienceasia1513-1874.2010.36.072]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb