Volume 10, Issue 27 (11-2018)                   jcb 2018, 10(27): 104-114 | Back to browse issues page


XML Persian Abstract Print


Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO)
Abstract:   (3476 Views)
Heterotic groups distinguished among breeding populations provide basic information to help plant breeders to control heterosis consciously. Development of alfalfa free hybrids can provide heterosis through parents' selection with crossing between partially inbred lines from two or three generations of selfing. In order to study of combining ability for forage dry matter, height and regrowth rate, selected partially inbred lines from the second generation of eight ecotypes of alfalfa were evaluated in a half-diallel cross design. Field experiments were performed in a randomized complete block design with three replications, including eight parents and 28 hybrids (F1) at Karaj and Arak during 2014-2015. Graphical GGE biplot method was applied to analyze the data. Based on the results of analysis of variance, mean square of GCA and SCA, and their interaction with environment were significant(p<0.01). GGE biplot graphical method showed the highest positive GCA for Nikshahri and the highest amount of negative GCA for Kowzareh and Rahnani as parents of crosses for all traits. SCA was maximum for two specific parents, Nikshahri × Ghahavand and Nikshahri × Silvana crosses. Results also indicated that crossing between the Iranian partially inbreds (S2) of alfalfa to produce free hybrids can provide opportunities to exploit heterosis potential and improve forage yields.
Full-Text [PDF 1828 kb]   (892 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/11/1 | Revised: 2018/12/8 | Accepted: 2018/02/5 | Published: 2018/12/8

References
1. Al Lawati, A.H., C.A. Pierce, L.W. Murray and I.M. Ray. 2010. Combining ability and heterosis for forage yield among elite alfalfa core collection accessions with different fall dormancy responses. Crop Science, 50: 150-158. [DOI:10.2135/cropsci2008.09.0549]
2. Bertoria, L., C. Lopez and R. Burak. 2006. Biplot analysis of forage combining ability in Maize landraces. Crop Science, 46(3): 1346-1353. [DOI:10.2135/cropsci2005.09-0336]
3. Bhandari, H.S., C.A. Pierce, L.W. Murray and I.M. Ray. 2007. Combining abilities and heterosis for forage yield among high yielding accessions of the alfalfa core collection. Crop Science, 47: 665-673. [DOI:10.2135/cropsci2006.06.0398]
4. Bingham, E.T., R.W. Groose, D.R. Woodfield and K.K. Kidwell. 1994. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Science, 34: 823-829. [DOI:10.2135/cropsci1994.0011183X003400040001x]
5. Brummer, EC. (1999). Capturing heterosis in forage crop cultivar development. Crop Science, 39: 943-954. [DOI:10.2135/cropsci1999.0011183X003900040001x]
6. Carelli, M., C. Scotti, G. Gnocchi, D. Kertikova, L. Ferrari and P. Gaudenzi. 2006. Genetic diversity in breeding for narrow genetic based cultivar models in alfalfa. In Proceedings of the XXVI EUCARPIA fodder crops and amenity grasses section and XVI Medicago spp., 75-79 pp., Group Joint Meeting Breeding and Seed Production for Conventional and Organic Agriculture, Perugia
7. Darvishzadeh, R., I. Bernousl, S. Poormohammad-Kiani, G. Dechamp-Guillaume and A. Sarrafi. 2009. Use of GGEbiplot methodology and griffing diallel method for genetic analysis of partial resistance to phoma black stem disease in sunflower. Acta Agriculturae Scandinavica, Soil and Plant Science, 59: 485-490. [DOI:10.1080/09064710802282747]
8. Demarly, Y. 1979. The concept of linkat. In: Zeven, A. C. and A. M. Van Harten, (eds.) Proc. Conference Broadening Genetic Base of Crops. 257-265 pp., Centre for Agricultural Publishing and Documenta- tion, Wageningen, the Netherlands.
9. Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9: 463-493. [DOI:10.1071/BI9560463]
10. Hayman, B.I. 1954. The theory and analysis of diallel crosses. Genetics, 39: 789-809.
11. Hill, R. R., Jr., J. S. Shenk and R. F. Barnes. 1988. Breeding for yield and quality. In: Hanson, A.A., D. K. Barnes and R. R. Hill (eds.) Alfalfa and alfalfa improvement. 809-825 pp., ASA, CSSA, SSSA, Madison, WI.
12. Hill, R.R. Jr. 1983. Heterosis in population crosses of alfalfa. Crop Science, 23: 48-50. [DOI:10.2135/cropsci1983.0011183X002300010014x]
13. Holland, J.B. and Bingham, E.T. 1994. Genetic improvement for yield and fertility of alfalfa cultivars representing different eras of breeding. Crop Science, 34: 953-957. [DOI:10.2135/cropsci1994.0011183X003400040022x]
14. Julier, B., C.Huyghe and C. Ecalle. 2000. Within and among-cultivar genetic variation in alfalfa: forage quality, morphology and yield. Crop Science, 40: 365-369. [DOI:10.2135/cropsci2000.402365x]
15. Katic, S., S. Vasiljevic, Z. Lugic, J. Radovic, D. Milic. 2008. Previous and future directions of perennial legumes selection. In: Serbia. Proceedings of the International Conference: Conventional and molecular breeding of field and vegetable crops. 557-563pp., Novi Sad-Serbia,
16. Khodarahmpour, Z. and M. Motamedi. 2016. Study of genetic diversity of alfalfa (Medicago sativa L.) genotypes via multivariate analysis. Journal of Crop Breeding, 8: 163-169 (In Persian).
17. Kiani, G., G.A. Nematzadeh, S.K. Kazemitabarand, O.Alishah. 2007. Combining ability in cotton cultivar for agronomic traits. International Journal of Agriculture and Biology, 9: 521-522.
18. Michaud, R., W.F. Lehman, M.D. Rumbaugh. 1988. World distribution and historical development. In: Hanson, A.A., D. K. Barnes and R. R. Hill (eds.) Alfalfa and alfalfa improvement, 26-82pp., ASA, CSSA, SSSA, Madison, WI.
19. Milić, D., S. Katić , A. Miklić, D. Karagić, J. Gvozdanović-Varga, S. Petrovicć and J. Boć anski, 2011. Genetic control of agronomic traits in alfalfa (M. sativa ssp. sativa L.). Euphytica, 182: 25-33. [DOI:10.1007/s10681-011-0434-x]
20. Milić, D., S. Katić. A. Mikić and Karagić, D. 2010. Heterotic response from a diallel analysis between alfalfa cultivars of different geographic origin. In Cristian, H. (eds.) Sustainable use of genetic diversity in forage and turf breeding, 551-556 pp., Springer, New York. [DOI:10.1007/978-90-481-8706-5_82]
21. Mohammadzadeh Jalaly, H., M. Valizadeh, V. Nasrollahzade asl, J. Emaratpardaz, M. Yusefi and S. Moharramnejad5. 2017. A study of genetic diversity and heritability in some of agronomic traits in alfalfa half-sib families. Journal of Crop Breeding, 9: 82-88 (In Persian).
22. Monirifar, H. and R. Mazlomi. 2014. Repeated screening for selection of salt tolerant alfalfa ecotypes. Journal of Crop Breeding, 6: 89-100 (In Persian).
23. Monirifar, H. 2016. Development and evaluation of a synthetic alfalfa variety for tolerance to salinity. Journal of Crop Breeding, 8: 176-182 (In Persian). [DOI:10.29252/jcb.8.18.176]
24. Pandey, S. K., G. P. Shukla, Sh. Kumari and H.C. Pandey. 2012. Selfing and Hybridization potentials in alfalfa (Medicago sativa L.). Agricultural Science Research Journal, 2(4): 140-144.
25. Riday, H. and E.C. Brummer. 1999. Heterosis in alfalfa Medicago sativa subsp. sativa x subsp. falcata. http://www.naaic.org/ TAG/TAGpapers/riday/riday.html. Accessed 09 Oct 1999
26. Riday, H. and E.C. Brummer. 2002. Forage yield heterosis in alfalfa. Crop Science, 42: 716-723. [DOI:10.2135/cropsci2002.0716]
27. Riday, H., E.C. Brummer, T.A. Campbell, D. Luth and P.M. Cazcarro. 2003. Comparations of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica, 131: 37-45. [DOI:10.1023/A:1023050126901]
28. Rotili, P. 1976. Performance of diallel crosses and second generation synthetics of alfalfa derived from partly inbred parents. I. Forage yield. Crop Science, 16: 247-251. [DOI:10.2135/cropsci1976.0011183X001600020021x]
29. Rotili, P. and L. Zannone. 1974. General and specific combining ability in alfalfa at different levels of inbreeding and performance of second generation synthetics measured in competitive conditions. Euphytica, 23: 569-577. [DOI:10.1007/BF00022478]
30. Rotili, P., G. Gnocchi, C. Scotti and L. Zannone. 1999. Some aspects of breeding methodology in alfalfa. http://www.naaic.org/TAG/TAGpapers/rotili/rotilipapers.html
31. SAS Institute. 2008. SAS system for Windows: Release 9.2. SAS
32. Scotti, C. and E.C. Brummer. 2010. Creation of heterotic groups and hybrid varieties. In Huyghe, C. (eds.) Sustainable use of genetic diversity in forage and turf breeding, 509-518 pp., Springer, New York. [DOI:10.1007/978-90-481-8706-5_75]
33. Scotti, C., M. Carelli, O. Calderini, F.Panara and P. Gaudenzi. 2011. Agronomic and molecular analysis of heterosis in alfalfa. Plant Genetic Resources: Charecterization and Utilization, 9: 288-290. [DOI:10.1017/S1479262111000621]
34. Segovia-Leirma, A., L.W. Murray, M.S. Townsend and I.M. Ray. 2004. Population-based diallel analyses among nine historically recognized alfalfa germplasms. Theoretical and Applied Genetics, 109: 1568-1575. [DOI:10.1007/s00122-004-1784-8]
35. Shang, Y.I., L.I. Shao-Qin, L.I. Dian-Rong, and T. Jian-Hual. 2006. GGE biplot analysis of diallel cross of Brassica napus L. Acta Agronomica Sinica, 32: 243-248.
36. Sriwatanapongse, S. and C.P. Wilsie. 1968. Intra- and intervariety crosses of Medicago sativa L. and Medicago falcata L. Crop Science, 8: 465-466. [DOI:10.2135/cropsci1968.0011183X000800040021x]
37. Tucak, M., S. Popović, T. Čupić, V. Španić, B. Šimić, and V. Meglič. 2012. Combining abilities and heterosis for dry matter yield in alfalfa diallel crosses. Romanian Agricultural Research, 29: 72-77.
38. Tysdal, H.M. and T.A. Kiesselbach. 1944. Hybrid alfalfa. Journal of the American Society of Agronomy, 36: 649-667. [DOI:10.2134/agronj1944.00021962003600080003x]
39. Veronesi, F., C. Huyghe, and I. Delgado. 2006. Lucerne breeding in Europe: results and research strategies for future developments. In: Lloveras, JA. Gonzalez-Rodriguez, O. Vazquez-Yanez, J. Pineiro., O. Santamaria, L. Olea and M.J. Poblaciones (eds.) Sustainable grassland productivity. 232-242 pp., Proceedings on the 21st General Meeting of the European Grassland Federation. Badajoz, Spain. Grassland Science in Europe.
40. Woodfield, D.R. and E.T. Bingham. 1995. Improvement in two allele autotetraploid populations of alfalfa explained by accumulation of favorable alleles. Crop Science, 35: 988-994. [DOI:10.2135/cropsci1995.0011183X003500040010x]
41. Yan, W. 2001. GGEBiplot-a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93: 1111-1118. [DOI:10.2134/agronj2001.9351111x]
42. Yan, W. and L.A. Hunt. 2002. Biplot analysis of diallel data, Crop Science, 42: 21-30. [DOI:10.2135/cropsci2002.0021]
43. Yan, W. and M.S. Kang. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, FL. [DOI:10.1201/9781420040371]
44. Yan, W., L.A. Hunt, Q. Sheng, and Z. Szlavnics. 2000. Cultivar evaluation and mega-enviroment investigation based on the GGE biplot. Crop Science, 40: 597- 605. [DOI:10.2135/cropsci2000.403597x]
45. Zhang, Y., M.S. Kang and R.R. Lamkey. 2005. DIALLEL-SAS05: a comprehensive program for Griffing's and Gardner- Eberhart analyses. Agronomy Journal, 97: 1097-1106. [DOI:10.2134/agronj2004.0260]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.