Volume 9, Issue 22 (9-2017)                   jcb 2017, 9(22): 73-81 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Honarmand L, Zare N, Asghari-Zakaria R, Sheikhzade Mosadegh P, Asghar Askari A. (2017). The Effects of Ultrasound on Multiple Shoot Regeneration from Sainfoin (Onobrychis sativa) Shoot Apex. jcb. 9(22), 73-81. doi:10.29252/jcb.9.22.73
URL: http://jcb.sanru.ac.ir/article-1-846-en.html
University of Mohaghegh Ardabili
Abstract:   (3657 Views)
Ultrasound has multiple industrial, medical and biotechnological applications. Ultrasound increases membrane permeability and causes several biological effects in plant cells. In this research, the effects of ultrasound on survival and growth of the sainfoin shoot apex explants were investigated. For this, shoot apex explants were exposed to ultrasonic waves (Frequency 37 kHz) for 0, 20, 30, 40, 50, 60, 90, 120, 180, 240 and 300 seconds in a ultrasonic bath and then cultured on MS medium supplemented with 0.1 mg/l IBA and 3 mg/l BAP. Results showed that the percentage of shooting (explants with shoot growth) significantly reduced by ultrasound treatment, but percentage of multiple shoots, number of shoots per explants and percentage of callusing significantly increased. Control treatment (without ultrasound) showed the highest percentage of shooting with the lowest callus induction and percentage of explants vitrification. The highest percentage of callus induction (60.98% and 61.11%) was observed in higher sonication dosages (180 and 240 seconds). While, the highest percentage of multiple shoots, number of shoots per explants and percentage of explants vitrification were obtained in 30 seconds ultrasound treatment. Increasing ultrasound treatment duration decreased viability of plant cells and tissues, and as a result reduced shooting of explants
Full-Text [PDF 467 kb]   (1472 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/10/9 | Revised: 2019/04/15 | Accepted: 2017/10/9 | Published: 2017/10/9

References
1. Ananthakrishnan, G., X. Xiaodi, S. Amutha, S. Singer, M. Muruganantham, S. Yablonsky, E. Fischer and V. Gaba. 2007. Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants. Plant Cell Reports, 26: 267-276. [DOI:10.1007/s00299-006-0235-1]
2. Ansory, A., H. Shahgoly, M. Gholipour and A.R. Fallah. 2013. The effect of ultrasound and growth promoting bacteria on germination and growth of wheat (Triticum aestivum L.). Journal of Soil Biology, 2: 123-132.
3. Bakshi, S., A. Ayan Sadhukhan, S. Mishra and L. Lingaraj Sahoo. 2011. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Reports, 30: 2281-2292. [DOI:10.1007/s00299-011-1133-8]
4. Behroz, P., S. Aharizad, S.A. Mohamadi, F. Normal Moayed and P. Hazegh Jafari. 2010. Investigation of genetic diversity in sainfoin ecotypes based on important characteristics using multivariate statistical analysis. Journal of Crop Breeding, 2(6): 53-66. (In Persian)
5. Beranova, M., S. Rakousky, Z. Vavrova and T. Skalicky. 2008. Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linux usitatissimum L.). Plant Cell, Tissue and Organ Culture, 94: 253-259. [DOI:10.1007/s11240-007-9335-z]
6. Choudgary, M.L. and C.K. Chin. 1995. Ultrasound mediated delivery of compounds into petunia protoplasts and cells. Journal of Plant Biochemistry and Biotechnology, 4: 37-9. [DOI:10.1007/BF03262948]
7. DiCosmo, F and M. Misawa. 1985. Eliciting secondary metabolism in plant cell cultures. Trends in Biotechnology, 3: 318-322. [DOI:10.1016/0167-7799(85)90036-8]
8. Doktycz, S.J. and K.S. Suslick. 1990. Interparticle collisions driven by ultrasound. Science, 247: 1067-1069. [DOI:10.1126/science.2309118]
9. Dong, L., W. Yong, L. Lin and J. Wu. 2002. Enhancement of shikonin production in single and two phase suspension cultures of Lithos permum erythrorhizon cells using low energy ultrasound. Biotechnology and Bioengineering, 78: 81-88. [DOI:10.1002/bit.10180.abs]
10. Firoozabady, E. and D.L. DeBoer. 1993. Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In Vitro Cellular and Developmental Biology-Plant, 29: 166-173. [DOI:10.1007/BF02632030]
11. Gaba, V., K. Kathiravan, S. Amutha, S. Singer, X. Xiaodi and G. Ananthakrishnan. 2006. The uses of ultrasound in plant tissue culture. In: Dutta, G.S. and Y. Ibaraki (eds.) Focus on biotechnology, 417-426. [DOI:10.1007/1-4020-3694-9_22]
12. Ghanavati, F., H. Eskandari, G. Bakhshi Khaniki, B. Sorkhi and H. Amirabadizadeh. 2010. Karyotypic study of sect. Hymenobrychis of Onobrychis in Iran. Seed and Plant Improvement Journal, 26: 545-560 (In Persian).
13. Gould, J. and M. Magallanes-Cedeno. 1998. Adaptation of cotton shoots apex culture to Agrobacterium-mediated transformation. Plant Molecular Biology Reporter, 16: 1-10. [DOI:10.1023/A:1007438104369]
14. Harold, N., H.N. Trick and J.J. Finer. 1997. sonicated-assisted Agrobacterium-mediated transformation. Transgenic Research, 6: 329-336. [DOI:10.1023/A:1018470930944]
15. Hedayati, K., B. Emadi, M. Khojastehpour and S.h. Beiraghi-Toosi. 2013. The effect of ultrasonic waves on sugar extraction and mechanical properties of sugar beet. Journal of Agricultural Machinery, 2: 144-153.
16. Hegazy, H.S., S.M. Ghazi and H.E. Daif. 2002. Studies of the effect of ultrasonic waves on: Iv- germination, growth regulator and nucleic acid contents of plant seedling. Journal of King Abdulaziz University - Science, 14: 25-38. [DOI:10.4197/Sci.14-1.3]
17. Honarmand, L., N. Zare, R. Zakaria-Asghari and P. Sheikhzadeh-Mosadegh. 2016. In vitro regeneration of sainfoin (Onobrychis sativa) via shoot apex explant. Iranian Journal of Filed Crop Science, 47: 315-328 (In Persian).
18. Horgan, R. 1984. Cytokinins. In: wilkins, M.b. (eds) In advanced plant physiology. Pitman, London, 90-116 pp.
19. Huber, P.E.P. and P. Fisterer. 2000. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Therapy, 7: 1516-1525. [DOI:10.1038/sj.gt.3301242]
20. Jafarimanesh, M.A. 2009. Gene transfer techniques in genetic engineering and production of transgenic plants. Regional Food and Biotechnology Conference, 13- 14 pp.
21. Joersbo, M. and J. Brunstedt. 1990. Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Reports, 9: 207-210. [DOI:10.1007/BF00232181]
22. Joersbo, M. and J. Brunstedt. 1992. Sonication: a new method for gene transfer to plants. Physiologia Plantarum, 85: 230-234. [DOI:10.1034/j.1399-3054.1992.850215.x]
23. Koohi L., N. Zare, A. Amani and P. SheikhZadeh-Mosaddegh. 2016. The effect of ultrasound on viability of tobacco cells. Journal of Plant researches (Iranian Journal of Biology), 29(2): 441-451 (In Persian).
24. Krishnamurty, E., A. Satyavati and V. Vidyavati. 1980. Effect of ultrasonic irradiation on Vigna sinensis (L) (Papilionaceae). Journal of Pure and Applied Ultrasonics, 2: 56-58.
25. Liu, Y., H. Yang and A. Sakanishi. 2005. Ultrasound: Mechanical gene transfer into plant cells by sonoporation. Biotechnology Advances, 16 pp. [DOI:10.1016/j.biotechadv.2005.04.002]
26. Majidi, M.M. and A. Arzani. 2004. Study of induced mutation via Ethy l- Methan Sulfonat (EMS) in Sainfoin (Onobrychis viciifolia Scop.). Journal of Agricultural Science and Technology, 18: 167-180 (In Persian).
27. Marks, T.R. and S.E. Simpson. 1994. Factors affecting shoot development in apically dominant Acer cultivars in vitro. Journal of Horticultural Science and Biotechnology, 69: 543-552. [DOI:10.1080/14620316.1994.11516486]
28. Meurer, C.A., R.D. Dinkins and G.B. Collins. 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Reports, 18: 180-186. [DOI:10.1007/s002990050553]
29. Miller, D.L., S. Bao, R.A. Gies and B.D. Thrall. 1999. Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound in Medicine and Biology, 25: 1425-1430. [DOI:10.1016/S0301-5629(99)00105-2]
30. Pedroso, M.C. and M.C. Pais. 1992. Minituber production from immature seed suspension culture of Orchis papilionacea. In vitro Cellular Developmental Biology-Plant, 28: 183-186. [DOI:10.1007/BF02823314]
31. Saglam, S. 2010. Growth regulators effects on In vitro shoot regeneration of sainfoin (Onobrychis sativa Lam.). Biotechnology and Biotechnological Equipment, 24: 2077-2079. [DOI:10.2478/V10133-010-0089-0]
32. Santarem, E.R., H.N. Trick, J.S. Essig and J.J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Reports, 17: 752-759. [DOI:10.1007/s002990050478]
33. Sefidkon, F. and M. Najafpour Navaii. 2001. Chemical Composition of the oil of Prangos uloptera DC. Journal of Essential Oil Research, 13: 84-85. [DOI:10.1080/10412905.2001.9699620]
34. Seyed-Sharify, R. and S. Hokmalipour. 2010. Forage crops. Amidi publications, pp: 87-95.
35. Shoog, F. and R.Y. Schmitz. 1979. Biochemistry and physiology in cytokinins. In: Litwak, G. (eds.) Biochemical actions in hormones, pp: 315-413. [DOI:10.1016/B978-0-12-452806-2.50013-3]
36. Soares, M.I.M., S. Kakhimov and Z. Shakirov. 2000. Productivity of the desert legume" Onobrychis". Dryland Biotechnoloies, 6 pp.
37. Somers, P.A., D.A. Samac and P.M. Olhoft. 2003. Recent advances in legume transformation. Plant Physiology, 131: 892-899. [DOI:10.1104/pp.102.017681]
38. Srivastava, L.M. 2002. Plant Growth and Development: Hormones and Environment. Academic Press, Simon Fraser University, Burnaby, British Columbia, 772 pp.
39. Steeves, T.A. and I.M. Sussex. 1989. Patterns in Plant Development. Cambridge, Cambridge University Press, 388 pp. [DOI:10.1017/CBO9780511626227]
40. Sticklen, M. and H.F. Oraby. 2005. Shoot apical meristem: A sustainable explants for genetic transformation of cereal crops. In vitro Cellular Developmental Biology-Plant, 41: 187-200. [DOI:10.1079/IVP2004616]
41. Tohidfar, M., N. Zare, G. Jouzani, S. Eftekhari. 2013. Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell, Tissue and Organ Culture, 113: 227-235. [DOI:10.1007/s11240-012-0262-2]
42. Trick, H.N. and J.J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max L.) Merrill embryogenic suspension culture tissue. Plant Cell Reports, 17: 482-488. [DOI:10.1007/s002990050429]
43. Umbeck, P., W. Swain and N.S. Yang. 1989. Inheritance and expression of genes for kanamycin and chloramphenicol resistance in transgenic cotton plants. Crop Science, 29: 196-201. [DOI:10.2135/cropsci1989.0011183X002900010042x]
44. Zapata, C., S.H. Park, K.M. El-Zik and R.H. Smith. 1999. Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theoretical and Applied Genetics, 98: 252-256. [DOI:10.1007/s001220051065]
45. Zamanifar, M., F. Nazarian and A. Ismaili. 2016. Comparative study of two different cytokinins on direct regeneration of different sugar beet explants in tissue culture condition. Journal of Crop Breeding, 8(19): 203-208 (In Persian).
46. Zhang, L.J., L.M. Cheng, N. Xu, N.M. Zhao, C.G. Li, Y. Jing and S.R. Jia. 1991. Efficient transformation of tobacco by ultrasonication. Biology and Technology, 9: 996-997. [DOI:10.1038/nbt1091-996]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb