Volume 9, Issue 22 (9-2017)                   jcb 2017, 9(22): 117-124 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrabioun Mohammadi M, Babaeizad V, Rahimian H, Ebrahim Nejad S. (2017). Screening of some Barley Lines Against Powdery Mildew Agent and Considering of NH1 and Several Pathogenesis Related Genes in Disease Resistance. jcb. 9(22), 117-124. doi:10.29252/jcb.9.22.117
URL: http://jcb.sanru.ac.ir/article-1-837-en.html
Sari Agricultural Sciences and Natural Resources University
Abstract:   (4122 Views)
Barley is one of the most important cereals in animal nutrition and it has a role as a substitute source of wheat and rice in diet nutrition. This product is always exposed to damaging factors such as pests and diseases which lead to reduce yield and quality. The Powdery mildew agent, as a biotrophic fungus, seriously causes damage in some barley plantation areas. Similar to other plants, barley employs diverse mechanisms against the disease based on proteins and other antimicrobial agents such as pathogenesis- related proteins which have essential roles in disease resistance. In this study, morphological and molecular analyses were conducted on some barley genotypes after challenge inoculation with Blumeria graminis f.sp hordei (Bgh), the causal agent of powdery mildew. For this purpose, 11 barley cultivars were selected for initial screening. Result from data analysis showed that Mb-86-5 was the most susceptible cultivar and in Avt/Attiki, Ceres, BIR, L.1242, Yousef, Nosrat, Mahoor, Comp-1-71E and Rihane-03 cultivars, the rate of Bgh colony number significantly decreased when compared to susceptible Cv. The susceptibility rate between Beecher and Mb-86-5 was not significant. Determination of the genes expression involving in disease resistance, carried out on one- week old seedling. For all samples total RNAs were extracted. Molecular investigation showed that PR1, PR5, NH1, POX genes enhanced significantly in resistant cultivar Ceres when compared to Mb-86-5 susceptible genotype. Results of this study indicate that the mentioned genes are involved in powdery mildew disease resistance in Ceres barley genotype.
Full-Text [PDF 1791 kb]   (1461 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/10/9 | Revised: 2019/04/15 | Accepted: 2017/10/9 | Published: 2017/10/9

References
1. Ahangar, L., V. Babaeizad, G.A. Ranjbar, H. NajafiZarrini and A. Biabani. 2015. Study of PR Gene Expression Pattern related to in Induced Resistance to Powdery Mildew in Susceptible Wheat Genotype after Treating with Salicylic Acid. Journal of Crop Breed, 17: 208-217 (In Persian). [DOI:10.18869/acadpub.jcb.8.17.218]
2. Babaeizad, V. 2009. Generation and molecular analyses of transgenic barley (Hordeum vulgare L.) in response to relevant pathogens. University of Giessen, Giesssen/ Germany, 103 pp.
3. Bryngelsson, T., J. Sommer-Knudsen, P.L. Gregersen, D.B. Collinge, B. Ek and H. Thordal-Christensen. 1994. Purification, characterization, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Mol. Plant Microbe Interaction, 7: 267-275. [DOI:10.1094/MPMI-7-0267]
4. Campbell, J., H. Zhang, M.J. Giroux, L. Feiz, Y. Jin, M. Wang and L. Huang. 2012. A mutagenesis-derived broad-spectrum disease resistance locus in wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 125: 391-404. [DOI:10.1007/s00122-012-1841-7]
5. Cao, H., S.A. Bowling, A.S. Gordon and X. Dong. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cel, 6: 1583-1592. [DOI:10.1105/tpc.6.11.1583]
6. Cao, H., J. Glazebrook, J.D. Clarke, S. Volko and X. Dong.1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats Cell, 88: 57-63. [DOI:10.1016/S0092-8674(00)81858-9]
7. Delaney, T.P., S. Uknes, B. Vernooji and L. Friedrich.1994. "A central role of salicylic acid in plant disease resistance" Science, 266: 1247-1250. [DOI:10.1126/science.266.5188.1247]
8. Dong, X. 2004. NPR1, all things considered. Current Opinion in Plant Biology, 7: 547-552. [DOI:10.1016/j.pbi.2004.07.005]
9. Eichmann, R., C. Dechert, K.H. Kogel and R. Huckelhoven. 2006. Transient over-expression of barley BAX inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f.sp hordei. Molecular Plant Pathology, 7: 543-552. [DOI:10.1111/j.1364-3703.2006.00359.x]
10. Grover, A. and R. Gowthaman. 2003. Strategies for development of fungus-resistant transgenic plants. Current Science, 84: 330-40.
11. Hernandez, H., M. Figueredo, N. Garrido, L. Sa'nchez and J. Sarracent. 2005. Intranasal immunisation with a 62 kDa proteinase combined with cholera toxin or CpG adjuvant protects against Trichomonas vaginalis genital tract infections in mice. International Journal Parasitology, 35: 1333-1337. [DOI:10.1016/j.ijpara.2005.08.010]
12. Hilaire, E., S.A. Young, L.H. Willard, J.D. McGee, T. Sweat , J.M. Chittor, J.A .Guikema and J.E. Leach. 2001. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Molecular Plant-Microbe Interactions, 14: 1411-1419. [DOI:10.1094/MPMI.2001.14.12.1411]
13. Jwa, N.S., G.K. Agrawal, S. Tamogami, M. Yonekura, O. Han, H. Iwahashi and R. Rakwal. 2006. Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiology and Biochemistry, 44: 261-273. [DOI:10.1016/j.plaphy.2006.06.010]
14. Liu, D.O.N.G., K.G. Raghothama, P.M. Hasegawa and R.A. Bressan. 1994. Osmotin over expression in potato delays development of disease symptoms. Proceeding National Academy of Sciences of the United States America, 91: 1888-1892. [DOI:10.1073/pnas.91.5.1888]
15. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262]
16. Makandar, R., J.S. Essig, M.A. Schapaugh, H.N. Trick and J. Shah. 2006. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant Microbe Interact, 19: 123-139. [DOI:10.1094/MPMI-19-0123]
17. Malnoy, M., Q. Jin, E.E. Borejsza-Wysocka, S.Y. He and H.S. Aldwinckle. 2007. Over-expression of the apple MpNPR1 gene confers increased disease resistance in Malus X domestica. Molecular Plant Microbe Interaction, 20: 1568-1580. [DOI:10.1094/MPMI-20-12-1568]
18. Matton, D.P. and N. Brisson. 1989. Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Molecular Plant-Microbe Interactions, 2: 325-331. [DOI:10.1094/MPMI-2-325]
19. Menezes, S.P., E.M. de Andrade Silva, E.M. Lima, A.O. de Sousa, B.S. Andrade, L.S.L. Lemos, K.P. Gramacho, A. da Silva Gesteira, , C.P. Pirovani and F. Micheli. 2014. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca 2+ and Mg 2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa.BMC Plant Biology, 11: 14-1. [DOI:10.1186/1471-2229-14-161]
20. Molitor, A., D. Zajic, L.M. Voll, J. Pons-Kühnemann, B. Samans, K.H. Kogel and F. Waller. 2011. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformosporaindica-mediated systemic induced resistance to powdery mildew. Molecular Plant-Microbe Interactions, 24: 1427-1439. [DOI:10.1094/MPMI-06-11-0177]
21. Muthukrishnan, S. 2003. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. Journal of Experimental Botany, 384: 1101-1111 [DOI:10.1093/jxb/erg110]
22. Nidermann, T., I. Genetet, T.Bruyère, R. Gees, A.Stintzi, M. Legrand, B. Fritig and E. Mösinger. 1995. Isolation and characterization of three 14-kiloDalton proteins 41 of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108: 17-27. [DOI:10.1104/pp.108.1.17]
23. Pallas, J.A., N.L. Paiva, C. Lamb and R.A. Dixon. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant Journal, 10: 281-293. [DOI:10.1046/j.1365-313X.1996.10020281.x]
24. Passardi, F., C. Penel and C. Dunand. 2004. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends in Plant Science, 9: 534-40. [DOI:10.1016/j.tplants.2004.09.002]
25. Peterhänsel, C., A. Freialdenhoven, J. Kurth, R. Kolsch and P. Schulze-Lefert. 1997. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell, 9: 1397-1409. [DOI:10.1105/tpc.9.8.1397]
26. Rayapuram, C., J. WU, C. Haas and I.T. Baldwin. 2008. PR-13/Thionin but not PR-1 mediates bacterial resistance in Nicotiana attenuata in nature, and neither influences herbivore resistance. Molecular Plant Microbe Interactions, 21: 988-1000. [DOI:10.1094/MPMI-21-7-0988]
27. Sasaki, K., T. Iwai, S. Hiraga, K. Kuroda, S. Seo, I. Mitsuhara, A. Miyasaka, M. Iwano, H. Ito, H. Matsui and Y. Ohashi. 2004. Ten Rice Peroxidases Redundantly Respond to Multiple Stresses Including Infection with Rice Blast Fungus. Plant Cell Physiology, 45: 1442-1452. [DOI:10.1093/pcp/pch165]
28. Sayari, M., V. Babaeizad, M.A.T. Ghanbari and H. Rahimian. 2014. Expression of the pathogenesis related proteins, NH-1, PAL, and lipoxygenase in the iranianTarom and Khazar rice cultivars, in reaction to Rhizoctoni asolani - the causal agent of rice sheath blight. Journal of Plant Protection Research, 54: 36-43. [DOI:10.2478/jppr-2014-0006]
29. Schultheiss, H., C. Dechert, K.H. Kogel and R. Hückelhoven. 2003. Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant Journal, 36: 589-601. [DOI:10.1046/j.1365-313X.2003.01905.x]
30. Shah, J., F. Tsui and D.F. Klessig. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Molecular Plant Microbe Interactions, 10: 69-78. [DOI:10.1094/MPMI.1997.10.1.69]
31. Stein, M., J. Dittgen, C. Sánchez-Rodrïguez, B.H. Hou, A. Molina, P. Schulze-Lefert, V. Lipka and S. Somerville. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18: 731-746. [DOI:10.1105/tpc.105.038372]
32. Van Loon, L.C. and E.A. Van Strien. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55: 85-97. [DOI:10.1006/pmpp.1999.0213]
33. Van Loon, L.C. 2000. Systemic induced resistance. In Mechanisms of resistance to plant diseases Kluwer: Academic press, Dirdrecht, pp: 521-574. [DOI:10.1007/978-94-011-3937-3_13]
34. Van Loon, L.C., M. Rep and C.M.J. Pieterse. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44: 135-62. [DOI:10.1146/annurev.phyto.44.070505.143425]
35. Velazhahan, R., S.K. Datta and S. Muthukrishnan. 1999. The PR-5 family, Thaumatin-like Proteins. In: Pathogenesis-Related Proteins in Plants. Ed. S. K. Datta and S. Muthukrishnan, CRC Press. pp: 107-129.
36. Yuan, Y., S. Zhong, Q. Li, Z. Zhu, Y. Lou, L. Wang, J. Wang, M. Wang, D. Yang and Z. He. 2007. Functional analysis of rice NPR1-like genes reveals that OsNPR1 /NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 5: 313-324. [DOI:10.1111/j.1467-7652.2007.00243.x]
37. Zhang, Y., Y.T. Cheng, N. Qu, Q. Zhao, D. Bi and X. Li. 2006. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs Plant Journal, 48: 647-656. [DOI:10.1111/j.1365-313X.2006.02903.x]
38. Zhu, B., T.H.H. Chen and P.H. Li. 1995. Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiology, 108: 929-937. [DOI:10.1104/pp.108.3.929]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb