دوره 10، شماره 28 - ( زمستان97 1397 )                   جلد 10 شماره 28 صفحات 27-37 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

tabatabaee M, haddadi F, Kamalaldini H, fazelinasab B. Evaluation of the Ability of Retrotransposon Markers to Study the Genetic Diversity in some Populations of Radish (Raphanus Sativus). jcb. 2018; 10 (28) :27-37
URL: http://jcb.sanru.ac.ir/article-1-816-fa.html
طباطبایی مصطفی، حدادی فاطمه، کمال الدینی حسین، فاضلی نسب بهمن. ارزیابی قابلیت نشانگرهای رتروترانسپوزون در بررسی تنوع ژنتیکی برخی جمعیت‌های تربچه . پژوهشنامه اصلاح گیاهان زراعی. 1397; 10 (28) :27-37

URL: http://jcb.sanru.ac.ir/article-1-816-fa.html


دانشگاه زابل
چکیده:   (574 مشاهده)
تربچه از تیره شب‌ بویان، دارای موادی از جمله سنوول، مالوین کلراید، ساپوژنین، سولفورافان و رافانین بوده و از خواص درمانی متعددی برخوردار است. در تحقیق حاضر تنوع ژنتیکی 7 جمعیت تجاری/بومی گـیاه دارویی تربچه با استفاده از نشانگر رتروترانسپوزونی IRAP بررسی شد. آغازگر ترکیبی LTR2 & LTR15 با 1 باند کمترین تعداد و آغازگر LTR23 با 16 باند بیشترین تعداد را در میان باندهای تولیدی توسط هر آغازگر داشتند. میانگین تعداد باند در کل جایگاه­ ها برابر 93/6 بود. بیشترین میزان شاخص چندشکلی (41/0) مربوط به آغازگر Sukkula و کمترین میزان شاخص چندشکلی (18/0) مربوط به آغازگر LTR2- LTR15 و با میانگین کل 28/0 مشاهده گردید. بیشترین میزان شاخص نشانگری (1/4) مربوط به آغازگر LTR3 و کمترین میزان شاخص نشانگری (18/0) مربوط به ترکیب آغازگری LTR15 & LTR2 مشاهده گردید. بیشترین میزان تعداد باند مؤثره، شاخص تنوع شانن و شاخص تنوع نی به ترتیب 82/1، 64/0 و 45/0 متعلق به آغازگر Sukkula و کمترین میزان تعداد باند مؤثره، شاخص تنوع شانن و شاخص تنوع نی به ترتیب 18/1، 27/0 و 15/0 متعلق به آغازگــر rtdk بود. در بیــن جمعیت ­های تربچه بیشترین درصد مکان چندشکل، تعـداد باند مؤثره، شاخـص تنـوع نی و شاخص تنوع شانن به تـرتیـب 85/46، 05/1، 17/0 و 26/0 متعلق به جمعیت Profit بود. تغییرات درون و بین جمعیت‌ها با استفاده از تجزیه واریانس مولکولی نشان داد که 59 درصد کل تغییرات ژنتیکی به تنوع درون جمعیت‌ها اختصاص داشت. نتایج این تحقیق نشان داد که می­ توان از جمعیت Profit (چون دارای بیشترین درصد چندشکلی و تنوع شانن و نی و تعداد باند موثره بوده) به‌عنوان یکی از پایه‌های پدری یا مادری و یا دهنده ژن انتخاب در اصلاح تربچه ­های ایران استفاده کرد.
متن کامل [PDF 833 kb]   (239 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: ۱۳۹۶/۵/۲۱ | ویرایش نهایی: ۱۳۹۸/۲/۱۸ | پذیرش: ۱۳۹۷/۱/۱۴ | انتشار: ۱۳۹۷/۱۲/۱۱

فهرست منابع
1. Aalami, A. and N. Karami. 2017. The Study of Genetic Diversity in Iranian Rice Cultivars using ISSR, IRAP and REMAP Markers. Journal of Crop Breeding. 8(20): 51-41.
2. Abdollahi Mandoulakani, B., Y. Piri, R. Darvishzadeh, I. Bernoosi and M. Jafari. 2011. Retroelement Insertional Polymorphism and Genetic Diversity in Medicago sativa Populations Revealed by IRAP and REMAP Markers. Plant molecular biology reporter. 30(2): 286-296. 10.1007/s11105-011-0338-x [DOI:10.1007/s11105-011-0338-x]
3. Abdollahi Mandoulakani, B. and I. Bernousi. 2015. Genetic diversity in iranian melon populations and hybrids assessed by IRAP and REMAP markers. Journal of Agricultural Science and Technology. 17(5): 1267-1277.
4. Abdollahi Mandoulakani, B., E. Yaniv, R. Kalendar, D. Raats, H. S. Bariana, M. R. Bihamta and A. H. Schulman. 2015. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theor Appl Genet. 128(2): 211-219. 10.1007/s00122-014-2422-8 [DOI:10.1007/s00122-014-2422-8]
5. Agrama, H. and M. Tuinstra. 2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African journal of biotechnology. 2(10): 334-340. [DOI:10.5897/AJB2003.000-1069]
6. Alikhani, L., M.-S. Rahmani, N. Shabanian, H. Badakhshan and A. Khadivi-Khub. 2014. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene. 552(1): 176-183. [DOI:10.1016/j.gene.2014.09.034]
7. Antonius-Klemola, K., R. Kalendar and A. H. Schulman. 2006. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics. 112(6): 999-1008. [DOI:10.1007/s00122-005-0203-0]
8. Asadkhani Mamaghani, R., S. A. Mohammadi and S. Aharizad. 2015. Transferability of barley retrotransposon primers to analyze geneticstructure in Iranian Hypericum perforatum L. populations. Turkish Journal of Botany. 39664-672. 10.3906/bot-1405-76 [DOI:10.3906/bot-1405-76]
9. Asghari-Mirk, A. R., S. Y. SayedMaasoumi and M. R. Bihamta. 2011. Studying of genetic diversity in some wheat cultivar using SSRs marker in dry stress condition, Sixth national congress of new idea in agriculture, Islamic azad University, Khorasgan.
10. Bahari, Z., A. Shojaeiyan, S. Rashidi Monfared, A. Mirshekari, K. Nasiri and M. Amiriyan. 2015. Investigation of Genetic Diversity among Some Iranian Dill (Anethum graveolens L.) Landraces, Using ISSR Markers. Journal of Plant Genetic Research. 2(1): 11-22. [DOI:10.29252/pgr.2.1.11]
11. Biswas, M. K., Q. Xu and X.-x. Deng. 2010. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae. 124(2): 254-261. [DOI:10.1016/j.scienta.2009.12.013]
12. Boronnikova, S. V. and R. N. Kalendar. 2010. Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants. Russian Journal of Genetics. 46(1): 36-42. 10.1134/s1022795410010060 [DOI:10.1134/S1022795410010060]
13. Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics. 32(3): 314-322.
14. Branco, C. J., E. A. Vieira, G. Malone, M. M. Kopp, E. Malone, A. Bernardes, C. C. Mistura, F. I. Carvalho and C. A. Oliveira. 2007. IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet. 48(2): 107-113. [DOI:10.1007/BF03194667]
15. Campbell, L. G. 2007. Rapid evolution in a crop-weed complex (Raphanus spp.). The Ohio State University.
16. D'Onofrio, C., G. De Lorenzis, T. Giordani, L. Natali, A. Cavallini and G. Scalabrelli. 2010. Retrotransposon-based molecular markers for grapevine species and cultivars identification. Tree Genetics & Genomes. 6(3): 451-466. [DOI:10.1007/s11295-009-0263-4]
17. Daei Hasani, B., M. Abedini, A. Hemati and S. Falahati. 2013. Radish and its medicinal properties. he third national conference on medicinal plants and sustainable agriculture.
18. Dalvand, K. and A. Eftekhari. 2014. Evaluation of Cadmium Uptake by Reddish cv. Sorkhan Plant (Raphanus sativus L.) in Cadmium Contaminated Soils. Scientific Journal Management System. 37(1): 67-75.
19. Dellaporta, S. L., J. Wood and J. B. Hicks. 1983. A plant DNA minipreparation: version II. Plant molecular biology reporter. 1(4): 19-21. [DOI:10.1007/BF02712670]
20. Djebali, N., J. K. Scott, M. Jourdan and T. Souissi. 2009. Fungi pathogenic on wild radish (Raphanus raphanistrum L.) in northern Tunisia. Phytopathologia mediterranea. 48(2): 205-213.
21. Drikvand, R., M. R. Bihamta, G. Najafian and A. Ebrahimi. 2013. Investigation of genetic diversity among bread wheat cultivars (Triticum aestivum L.) using SSR markers. Journal of Agricultural Science. 5(1): 122-129. [DOI:10.5539/jas.v5n1p122]
22. Eivazi, A., M. Naghavi, M. Hajheidari, S. Pirseyedi, M. Ghaffari, S. Mohammadi, I. Majidi, G. Salekdeh and M. Mardi. 2008. Assessing wheat (Triticum aestivum L.) genetic diversity using quality traits, amplified fragment length polymorphisms, simple sequence repeats and proteome analysis. Annals of Applied Biology. 152(1): 81-91. [DOI:10.1111/j.1744-7348.2007.00201.x]
23. Fazeli-Nasab, B., A. A. Mehrabi and A. Izadi-Darbandi. 2010. Genetic diversity of wheat storage proteins and SSRs markers. Modern Genetics. 5(2): 81-93.
24. Gautam Murty, S., F. Patel, B. Punwar, M. Patel, A. Singh and R. Fougat. 2013. Comparison of RAPD, ISSR, and DAMD markers for genetic diversity assessment between accessions of Jatropha curcas L. and its related species. Journal of Agricultural Science and Technology. 15(5): 1007-1022.
25. Guo, Z.-H., K.-X. Fu, X.-Q. Zhang, S.-Q. Bai, Y. Fan, Y. Peng, L.-K. Huang, Y.-H. Yan, W. Liu and X. Ma. 2014. Molecular insights into the genetic diversity of Hemarthria compressa germplasm collections native to southwest China. Molecules. 19(12): 21541-21559. [DOI:10.3390/molecules191221541]
26. Hashemi, H. and A. Safarnejad. 2010. The use of RAPD markers dor assessing the genetic diversity of Bunium persicum (Boiss) B. FEDTSCH populations. International Journal of Science and Nature. 1202-208.
27. Hassani-Tesie, S. F., H. Samizadeh-Lahiji and M. Shoaei-Deilami. 2016. Assessment of Genetic Diversity Among and Within Different Types of Tobacco (Nicotianatabacum L.) Using IRAP and REMAPMarkers. Journal of Crop Breeding. 7(16): 1-9.
28. Jaccard, P. 1912. The distribution of the flora in the alpine zone. New phytologist. 11(2): 37-50. [DOI:10.1111/j.1469-8137.1912.tb05611.x]
29. Jamalirad, S., S. Mohammadi and M. Toorchi. 2012. Assessing genetic diversity in a set of wheat (Triticum aestivum) genotypes using microsatellite markers to improve the yellow rust resistant breeding programs. African Journal of Agricultural Research. 7(48): 6447-6455. [DOI:10.5897/AJAR11.2059]
30. Kalendar, R., T. Grob, M. Regina, A. Suoniemi and A. Schulman. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics. 98(5): 704-711. [DOI:10.1007/s001220051124]
31. Kalendar, R. and A. H. Schulman. 2006. IRAP and REMAP for Retrotransposon Based on Genotyping and Fingerprinting. National Protocols. 1(5): 2478-2484. [DOI:10.1038/nprot.2006.377]
32. Kameli, M., S. Hesamzadeh and M. Ebadi. 2013. Assessment of genetic diversity on populations of three satureja species in Iran using ISSR markers. Annals of Biological Research. 4(3): 64-72.
33. Khaled, A., M. Motawea and A. Said. 2015. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetic Engineering and Biotechnology. 13(2): 243-252. [DOI:10.1016/j.jgeb.2015.05.001]
34. Lewontin, R. C. 1972. The apportionment of human diversity, pp. 381-398, Evolutionary biology. Springer. [DOI:10.1007/978-1-4684-9063-3_14]
35. Manninen, O., R. Kalendar, J. Robinson and A. H. Schulman. 2000. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Mikrobiol Virusol Genet. 264325-334. [DOI:10.1007/s004380000326]
36. Mir-Drikvand, R., A. Khyrolahi, A. Ebrahimi and M. Rezvani. 2015. Study of Genetic Diversity Among Some Rainfed Bread and Durum Wheat Genotypes, Using SSR Markers. Journal of Plant Genetic Research. 2(1): 35-44. [DOI:10.29252/pgr.2.1.35]
37. Mohammadi, S. and B. Prasanna. 2003. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science. 43(4): 1235-1248. [DOI:10.2135/cropsci2003.1235]
38. Momeni, H., B. Shiran, M. Khodambashi and K. Cheghamirzaei. 2013. Studying of genetic diversity in some population of Fritillaria imperialis L. in Iranian Zagros region using ISSR marker and morphological traits. Iranian journal of horticulture. 44(1): 61-72.
39. Momeni, S., B. Shiran and K. Razmjoo. 2006. Genetic variation in Iranian mints on the bases of RAPD analysis. Pakistan Journal of Biological Sciences. 9(10): 1898-1904. [DOI:10.3923/pjbs.2006.1898.1904]
40. Monden, Y., K. Yamaguchi and M. Tahara. 2014. Application of iPBS in high-throughput sequencing for the development of retrotransposon-based molecular markers. Current Plant Biology. 140-44. 10.1016/j.cpb.2014.09.001 [DOI:10.1016/j.cpb.2014.09.001]
41. Monden, Y., T. Hara, Y. Okada, O. Jahana, A. Kobayashi, H. Tabuchi, S. Onaga and M. Tahara. 2015. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing. Breeding science. 65(2): 145-153. [DOI:10.1270/jsbbs.65.145]
42. Nasri, S., B. A. Mandoulakani, R. Darvishzadeh and I. Bernousi. 2013. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem Genet. 51(11-12): 927-943. [DOI:10.1007/s10528-013-9618-5]
43. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences. 70(12): 3321-3323. [DOI:10.1073/pnas.70.12.3321]
44. Nei, M. and W.-H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences. 76(10): 5269-5273. [DOI:10.1073/pnas.76.10.5269]
45. Nguyen, T. X., S.-I. Lee, R. Rai, N.-S. Kim and J.-H. Kim. 2016. Ribosomal DNA locus variation and REMAP analysis of the diploid and triploid complexes of Lilium tigrinum Ker-Gawler. [DOI:10.1139/gen-2016-0011]
46. Olfati, J. A., H. Samizade, G. A. Peyvast, B. Rabiei and S. A. Khodaparast. 2012. Rleationship between genetic distance and heterosis in cucumber. International Journal of plant breeding. 621-26.
47. Pejmanmehr, M., M. A. Hasani, S. M. Fakhr-Tabatabai and J. Hadian. 2009. Genetic diversity and segregating of populations Zyrh English (Bunium persicum (Boiss)) using molecular markers RAPD. Journal of Environmental Sciences. 7(2): 63-76.
48. Petrovičová, L., Ž. Balážová, Z. Gálová, M. Wójcik-Jagła and M. Rapacz. 2014. RAPD Analysis of the Genetic Polymorphism in the Collection of Rye Cultivars. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 8(7): 664-668.
49. Prasad, M., R. Varshney, J. Roy, H. Balyan and P. Gupta. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics. 100(3-4): 584-592. [DOI:10.1007/s001229900102]
50. Rao, V. R. and T. Hodgkin. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant cell, tissue and organ culture. 68(1): 1-19. [DOI:10.1023/A:1013359015812]
51. Rauf, S., J. Teixeira da Silva, A. A. Khan and A. Naveed. 2010. Consequences of plant breeding on genetic diversity. International Journal of plant breeding. 4(1): 1-21.
52. Roder, M. S., J. Plaschke, S. U. König, A. Börner, M. E. Sorrells, S. D. Tanksley and M. W. Ganal. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG. 246(3): 327-333. [DOI:10.1007/BF00288605]
53. Rodrigues, V. F., R. R. Oliveira and M. R. Vega. 2014. A new isocoumarin from Cajanus cajan (Fabaceae). Nat Prod Commun. 9(4): 493-494. [DOI:10.1177/1934578X1400900416]
54. Rolf, F. J. 2002. NTSYS-Pc: Reference Manual. Exeter publishing Ltd. New York.
55. Sabot, F. and A. H. Schulman. 2007. Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genomics. 8(1): 247. [DOI:10.1186/1471-2164-8-247]
56. Saini, M., S. Singh, Z. Hussain and A. Yadav. 2010. RAPD analysis in mungbean [Vigna radiata (L.) Wilczek]: I. Assessment of genetic diversity.
57. Singh, P. and J. Singh. 2013. Medicinal and therapeutic utilities of Raphanus sativus. Int J Plant Anim Environ Sci. 3103-105.
58. Smýkal, P., N. Bačová-Kerteszová, R. Kalendar, J. Corander, A. H. Schulman and M. Pavelek. 2011. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics. 122(7): 1385-1397. [DOI:10.1007/s00122-011-1539-2]
59. Solouki, M., S. Hoseini, B. Siahsar and A. Tavassoli. 2012. Genetic diversity in dill (Anethum graveolens L.) populations on the basis of morphological traits and molecular markers. African journal of biotechnology. 11(15): 3649. [DOI:10.5897/AJB11.2169]
60. Suresh, S., J.-W. Chung, J.-S. Sung, G.-T. Cho, J.-H. Park, M. S. Yoon, C.-K. Kim and H.-J. Baek. 2013. Analysis of genetic diversity and population structure of 135 dill (Anethum graveolens L.) accessions using RAPD markers. Genetic resources and crop evolution. 60(3): 893-903. [DOI:10.1007/s10722-012-9886-7]
61. Teo, C. H., S. H. Tan, C. L. Ho, Q. Z. Faridah, Y. R. Othman, J. S. Heslop-Harrison, R. Kalendar and A. H. Schulman. 2005. Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology. 48(1): 96-105. [DOI:10.1007/BF03030568]
62. Venturi, S., L. Dondini, P. Donini and S. Sansavini. 2006. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theoretical and Applied Genetics. 112(3): 440-444. [DOI:10.1007/s00122-005-0143-8]
63. Vicient, C. M., R. Kalendar and A. H. Schulman. 2005. Variability, recombination and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol. 61275-291. [DOI:10.1007/s00239-004-0168-7]
64. Vukich, M., A. H. Schulman, T. Giordani, L. Natali, R. Kalendar and A. Cavallini. 2009. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theoretical and Applied Genetics. 119(6): 1027-1038. [DOI:10.1007/s00122-009-1106-2]
65. Yuying, S., D. Xiajun, W. Fei, C. Binhua, G. Zhihong and Z. Zhen. 2011. Analysis of genetic diversity in Japanese apricot (Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers. Scientia Horticulturae. 13250-58. 10.1016/j.scienta.2011.10.005 [DOI:10.1016/j.scienta.2011.10.005]
66. Zoghlami, N., I. Chrita, B. Bouamama, M. Gargouri, H. Zemni, A. Ghorbel and A. Mliki. 2007. Molecular based assessment of genetic diversity within Barbary fig (Opuntia ficus indica (L.) Mill.) in Tunisia. Scientia Horticulturae. 113(2): 134-141. [DOI:10.1016/j.scienta.2007.02.009]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb