Volume 9, Issue 21 (6-2017)                   jcb 2017, 9(21): 156-165 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2017). Identification of RAPD Marker Associated with Morphological Traits and Population Structure Assessed in Cultivated Flax (Linum Usitassimum L.). jcb. 9(21), 156-165. doi:10.29252/jcb.9.21.156
URL: http://jcb.sanru.ac.ir/article-1-807-en.html
Abstract:   (3642 Views)
       Linum is the largest genus of the Linaceae family comprising nearly 2030 species. Flax (Linum usitassimum L.) is the third largest natural fiber crop in the world. In the present study, RAPD marker were employed to identify informative markers associated with traits such as plant high, weight of capsules per plant, weight branch, capsules number of branches, capsules of the main stem, stem length, branch length, number of branches, thousand seed weight, number of capsules per plant, seed yield, biological yield and harvest index in flax cultivars. Thirteen RAPD primers amplified 169 loci among 10 flax cultivars, with an average of 13 loci per primer. Polymorphic information content (PIC) ranged from 0.05 (OPA-03) to 0.29 (OPD-03), with an average of 0.16. Cluster analysis based on molecular data assigned the genotypes into two groups, which coincided to geographic distribution. Cluster analysis result was confirmed by principal components analysis. Population structure analysis using model-based Bayesian confirmed the K=2, as the reliable value for the number of clusters. Stepwise regression analysis between molecular data as independent variables, and morphological data as dependent variables was performed to identify informative markers associated with the studied traits. Loci OPD-03 and OPD-05 were associated with both thousand seed weight and number of branches. Since all used RAPD loci except OPB-04 showed significant association with the studied traits, therefore, it is possible to use these primers along with morphological traits in flax breeding programs for identification of suitable parents to produce mapping populations and hybrid varieties.
Full-Text [PDF 584 kb]   (1238 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات، بیومتری
Received: 2017/07/31 | Accepted: 2017/07/31 | Published: 2017/07/31

References
1. Abdollahi Mandoulakani1, B., H. Azizi, Y. Piri, S. Rahmanpour and L. Hassani. 2016. Association Analysis for Morphological Traits in Cultivated Alfalfa using Molecular Markers. Journal of Crop Breeding, 8: 52-60.
2. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl, L.M. Albright, D.M. Coen and A. Varki. 1995. Current protocols in molecular biology. Jon Wiley, 225 pp.
3. Breseghello, F. and M.E. Sorrells. 2006. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46: 1323-1330. [DOI:10.2135/cropsci2005.09-0305]
4. Cardon, L.R. and L.J. Palmer. 2003. Population stratification and spurious allelic association. Lancet, 15: 598-604. [DOI:10.1016/S0140-6736(03)12520-2]
5. Carvalho, A., H. Guedes-Pinto and P. Martin Lopes. 2010. Genetic variability of old Portuguese bread wheat cultivar assayed by IRAP and REMAP markers. Annals of Applied Biology, 156: 337-345. [DOI:10.1111/j.1744-7348.2010.00390.x]
6. Clegg, M.T. 1997. Plant genetic diversity and the struggle to measure selection Journal of Heredity, 88: 1-7. [DOI:10.1093/oxfordjournals.jhered.a023048]
7. Crossa, J., J. Burguen, S. Dreisigacker, M. Vargas, S.A. Herrera-Foessel, M. Lillemo, R.P. Singh, R. Trethowan, M. Warburton, J. Franco, M. Reynolds, J.H. Crouch and R. Ortiz. 2007. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 177: 1889-1913. [DOI:10.1534/genetics.107.078659]
8. Flint-Garcia, S.A., A.C. Thuillet, J. Yu, G. Pressoir, S.M. Romero, S.E. Mitchell, J. Doebley, S. Kresovich, M.M. Goodman and E.S. Buckler. 2005. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant Journal, 44: 1054-1064. [DOI:10.1111/j.1365-313X.2005.02591.x]
9. Gebhardt, C., A. Ballvora, B. Walkemeier, P. Oberhagemann and K. Schuler. 2004. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: A case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding, 13: 93-102. [DOI:10.1023/B:MOLB.0000012878.89855.df]
10. Golshan, M., F. Rahmani and A. Hasanzadeh. 2014. Study of diversity in cultivated Flax (Linum usitassimum L.) based on morphological traits and RAPD molecular marker. Iranian Journal of Modern Genetic, 9:107-16.
11. Grant, C.A. and L.D. Baily. 1993. Interaction of Zinc with banded and broadcast phosphorus fertilizer on the dry matter and sees yield of oilseed flax. Canadian Journal of Plant Science, 73:7-15. [DOI:10.4141/cjps93-003]
12. Gupta, P.K., S. Rustgi and P.L. Kulwal. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57: 461-485. [DOI:10.1007/s11103-005-0257-z]
13. Ivanova, S., T. Rashevskaya and M. Makhonina. 2011. Flaxseed additive application in dairy products production. Procedia Food Science, 1: 275-280 [DOI:10.1016/j.profoo.2011.09.043]
14. Jun, T.H., K. Van, M.Y. Kim, S.H. Lee and D.R. Walker. 2008. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 162: 179-191. [DOI:10.1007/s10681-007-9491-6]
15. Kumar, J. and P. Kumar Gupta. 2008. Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnology Reports, 2: 93-112. [DOI:10.1007/s11816-008-0059-2]
16. Kumar, S., K. Tamura and M. Nei. 2004. MEGA3. Integrated software for molecular evolutionary genetic analysis and sequence alignment Briefing in Bioinformatics, 5: 150-163. [DOI:10.1093/bib/5.2.150]
17. Levesque, R. 2007. SPSS Programming and Data Management: A Guide for SPSS and SAS Users, Fourth Edition, SPSS Inc., Chicago.
18. Li, M., Z. Zhao, X. Miao and J. Zhou. 2014. Genetic diversity and population Structure of Siberia apricot (Prunus Siberia L.) in China. International Journal of Molecular Sciences, 15: 377-400. [DOI:10.3390/ijms15010377]
19. Muravenko, O.V., V.A. Lemesh, T.E. Samatadze, A.V. Amosova, Z.E. Grushetskaya, K.V. Popov, O.Y. Semenova, L.V. Khotyuleva and A.V. Zelenin. 2003. Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russian Journal of Genetics, 39: 414-421.
20. Murre, M.M. 1955. Vezelvas. Uitgeverij Ceres. Meppel. The Netherlands: 112 pp.
21. Naghavi, M.R., M. Mardi, S.M. Pirseyedi, M. Kazemi, P. Potki and M.R. Ghaffari. 2007. Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genetic Resources and Crop Evolution, 54: 237-240. [DOI:10.1007/s10722-006-9143-z]
22. Omid-Beigi, R. 1995. Findings about Production and Process of Medicinal Plants. Fekre Rooz Publication, 110 pp.
23. Pank, F. 2006. Adaptation of medicinal and aromatic plants to contemporary quality and technological demands by breeding: aims, methods and trends. Revista Brasileira de Plantas Medicinais, Botucatu, 8: 39-42.
24. Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945-959.
25. Rashidi Monfared, S., M. Mardi, A.H. Hoseinzadeh and M.R. Naghavi. 2008. Association analysis of important agronomic traits to retrotransposon markers SSAPs in durum wheat accessions. Journal of Modern Genetic, 3: 29-35.
26. Rechinger, K.H. 1974. Flora Iranica: Linacea. Graz: Akademische Druk-und Verlagsanstalt, 106 pp.
27. Rohlf, F.J. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, New York.
28. Rostok, N., L. Ramsay, K. MacKenzie, L. Cardle, P.R. Bhat, M.L. Roose, J.T. Svensson, N. Stein, R.K. Varshney, D.F. Marshall, A. Graner, T.J. Close and R. Waugh. 2006. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceeding of the National Academy of Sciences, 103: 18656-18661. [DOI:10.1073/pnas.0606133103]
29. Roy, J.K., R. Bandopadhyay, S. Rustgi, H.S. Balyan and P.K. Gupta. 2006. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Current Science, 90: 5-10.
30. Saremi Rad, B., M. Shokrpour, O. Sofalian, S.E. Hashemi Nezhad, A. Avanes and E. Esfandiari. 2014. Association Analysis of AFLP and RAPD Markers with Cadmium Accumulation in Wheat. Journal of Crop Breeding, 8: 126-133 (In Persian). [DOI:10.29252/jcb.8.18.126]
31. Schaal, B.A, D.A. Hayworth, K.M. Olsen, J.T. Rauscher and W.A. Smith. 1998. Phylogeographic studies in plants: Problems and prospects. Molecular Ecology, 7: 465-474. [DOI:10.1046/j.1365-294x.1998.00318.x]
32. Semagn, K., A. Bjornstad and M.N. Ndjiondjop. 2006. An overview of molecular market methods for plants. African Journal of Biotechnology, 5: 2540-2568.
33. Sharifinia, F. and M. Assadi. 2001. Flora of Iran, No. 34: Linaceae. Research Inst, Forests and Rangelands. Ministry of Jahad-e-Sazandegi, 114-125.
34. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations Science, 236: 787-792. [DOI:10.1126/science.3576198]
35. Smykal, P., N. Bacova-Kerteszova, R. Kalendar, J. Corander, A.H. Schlman and M. Pavelek. 2011. Geneticdiversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical andApplied Genetics, 122: 1385-1397. [DOI:10.1007/s00122-011-1539-2]
36. Soto-Cerda, B.J., A. Diederichsen, S. Duguid, H. Booker, G. Rowland and S. Cloutier. 2014. The potential of pale flax as a source of useful genetic variation for cultivated flax revealed through molecular diversity and association analysis. Molecular Breeding, 34: 2091-2107. [DOI:10.1007/s11032-014-0165-5]
37. Soto-Cerda, B.J., S. Duguid, H. Booker, G. Rowland, A. Diederichsen and S. Cloutier. 2014. Association mapping of seed quality traits using the Canadian flax (Linum usitassimum L.) core collection. Theoretical and Applied Genetics, 127: 881-896. [DOI:10.1007/s00122-014-2264-4]
38. Talebibodaf, M., A. Tabatabaei, K.H. Razmjoo and B. Shirvan. 2006. Genetic variation within and among species of perennial grass using AFLP markers. Iranian Journal of Science and Technology of Agriculture and Natural Resources, 10: 29-38.
39. Virk, P.S., B.V. Ford-Lioyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno and H.J. Newbury. 1996. Marker-assisted prediction of agronomic traits using diverse rice germplasm. In: Khush GS, editor. Rice genetics III Proceeding of the Third International Rice Genetics Symposium, Manilla (Philippines): International Rice Research Institue, pp: 307-316. [DOI:10.1142/9789812814289_0026]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb