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Figure 1. Distribution of top 20 transcription factor families among the 4572 differentially expressed genes
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Abstract

Drought causes detrimental effect on growth and productivity of many plants, including
crops. Chickpea (Cicer arietinum L.) as one of the most important legume crops is subjected to
terminal drought stress in arid and semi-arid regions. Transcription factors (TFs) play key roles
during signal transduction and adaptation response to abiotic stresses such as drought. In the
present study, TFs were assessed in a transcriptome analysis in the root and the shoot tissues of
two contrasting drought responsive kabuli chickpea. Out of 4572 differentially expressed genes,
1806 TFs were identified using search on the plant transcription factor database (PTFD). The
highest members (101) of the TFs belonged to bHLH family, followed by ERF (87), kinase
superfamily (76), NAC (74), MYB (72), WRKY (72), etc. The comparison of the tolerant
(Bivanij) and the sensitive (Hashem) cultivars under drought stress showed that the TFs were
differently distributed based on the cultivars and the tissue types. The TF families including B3,
NAC, MYB, WRKY, bHLH, etc. had most members in response to the drought stress.
Furthermore, the results revealed that several TFs which were involved in abiotic stress-related
responses and major biosynthetic pathways such as ABA and proline biosynthesis were up-
regulated in the shoot of Bivanij as compared to Hashem indicating the vita role of the shoot
for inducing drought tolerance in the tolerant cultivar. As result, these findings help the
researches to better understanding of signal transduction and stress-related regulating networks
in chickpea and provide the transferring of key TFs and promoting drought tolerance by genetic
engineering.

Keywords: Chickpea, Drought Stress, Signa Transduction, Transcription Factors,
Transcriptome
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