Volume 11, Issue 29 (3-2019)                   jcb 2019, 11(29): 93-103 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taherian M, Bihamta M R, Peyghambari S A, Alizadeh H, Rasoulnia A. (2019). Stability Analysis and Selection of Salinity Tolerant barley Genotypes. jcb. 11(29), 93-103. doi:10.29252/jcb.11.29.93
URL: http://jcb.sanru.ac.ir/article-1-771-en.html
Horticulture Crop Research Department, Khorasan Razavi Agricultural and Natural Resources Resaerch and Education Center, AREEO, Mashhad, Iran
Abstract:   (2992 Views)

The objectives of this study were to analyze genotype by environment (GE) interactions effects on the yield of barley lines and varieties, identifying salinity tolerant genotypes with stable yield and also evaluating genotype (G), environments (E) and GE interactions using different stability parameters. The research was set up as two Randomized Complete Block design with three replications at the agriculture research station of Neishabur, Khorasan razavi, during 2013-2015. Each experiment included 17 barley varieties and promising lines. According to Eberhart and Russell stability parameters, genotypes Fajre30, Nik and MBS82-4 had general adaptation. Genotypes Fajre30, Nik, Rihan, Valfajr, MBS82-5 and Mbs87-12 were selected by Simultaneous selection for yield and yield stability (YSi) method. The results of AMMI analysis for seed yield indicated that the Genotype (G) main effects, environment (E), and GE interactions as well as two first interaction principal components (IPCA1-2) were significant. AMMI biplot was able to distinguish stable genotypes and environments with high discrimination ability from low ones. According to the AMMI analysis, genotypes MBS87-12 and Fajre30, with seed yield higher than grand mean, were the most stable genotypes and with high specific adaptation to the saline environment.
 

Full-Text [PDF 859 kb]   (1157 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/06/1 | Revised: 2019/05/14 | Accepted: 2018/06/11 | Published: 2019/05/8

References
1. Albert, M.J.A. 2004. A comparison of statistical methods to describe genotype × environment interaction and yield stability in multi- location maize trials. MSc. Thesis. Department of Plant Sci. The University of the Free State, Bloemfontein, 100 pp.
2. Annicchiarico, P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica, 94: 53-62. [DOI:10.1023/A:1002954824178]
3. Badooie Delfard, A., K. Mostafavi and A. Mohammadi. 2016. Genotype-Environment interaction and yield stability of winter barley varieties. Journal of Crop Breeding, 8(20): 99-106.
4. Basford, K.E. and M. Cooper. 1998. Genotype by environment interaction and some considerations of their implication for wheat breeding in Australia. Australian Journal of Agriculture Research, 49: 154-175. [DOI:10.1071/A97035]
5. Dashtaki, M., A. YazdanSepas, T. NajafiMirak, M.R. Ghanadha, R. Joukar, M.R. Islampour, A.A. Moayedi, M. Nazeri, M.S. AbediOskooie, G. Aminzadeh, R. Soltani, S. Ashouri and A.R. Kouchaki. 2004. Stability of grain yield and harvest index in winter and facultative bread wheat (triticum aestivum l.) Genotypes. Seed and Plant Improvement Journal, 20(3): 263-280 (In Persian).
6. Ebdon, J.S. and H.G. Gauch. 2002. Additive main effect and multiplicative interaction analysis of national turf grass performance trials: I Interpretation of Genotype × environment interaction. Crop Science, 42: 489-496. [DOI:10.2135/cropsci2002.0489]
7. Eberhart, S.A. and W.A. Russell. 1996. Stability parameters for comparing varieties. Crop Science, 6: 36-40. [DOI:10.2135/cropsci1966.0011183X000600010011x]
8. Eskridge, K.M. 1990. Selection of stable cultivars using a safety-first rule. Crop Science, 30: 369-374. [DOI:10.2135/cropsci1990.0011183X003000020025x]
9. Finlay, K.W. and G.N. Wilkinson. 1963. The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research, 14: 742-754. [DOI:10.1071/AR9630742]
10. Gauch, H.G. and R.W. Zobel. 1996. AMMI analysis of yield trials. In: Kang, M.S. and H.G. Jr. Gauch (eds), Genotype- by- environment interaction. CRC Press, Boca Raton, Florida, 85-122. [DOI:10.1201/9781420049374.ch4]
11. Huhn, M. 1996. Nonparametric analysis of genotype × environment interaction by ranks. In: Kang, M. S. and H. G. Jr. Gauch (eds), Genotype- by- environment interaction. (pp.). CRC Press, Boca Raton. Florida, 235-271. [DOI:10.1201/9781420049374.ch9]
12. Iski, K. and J. Kleinschmit. 2005. Similarities and effectiveness of test environments in selecting and deploying desirable genotypes. Theoretical and Applied Genetics, 110: 311-322. [DOI:10.1007/s00122-004-1840-4]
13. Kang, M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85: 754-757. [DOI:10.2134/agronj1993.00021962008500030042x]
14. Kang, M.S. and D.P. Gorman 1989. Genotype× environment interaction in maize. Agronomy Journal, 81: 662-664. [DOI:10.2134/agronj1989.00021962008100040020x]
15. Kang, M.S. and R. Magari. 1996. New developments in selecting for phenotypic stability in crop breeding.In: M.S. Kang and H. G. Zobel (eds), Genotype- by- Environment interaction, 1-14. CRC Press, Boca Raton, 11-14. [DOI:10.1201/9781420049374.ch1]
16. Kang, M.S., D.P. Gorman and H.N. Pham. 1991. Application of a stability statistic to international maize yield trials. Theoretical and Applied Genetics, 81: 162-165. [DOI:10.1007/BF00215718]
17. Kang, M.S. 1998. Using genotype × environment interaction for crop cultivar development. Advances in Agronomy, 62: 199-252. [DOI:10.1016/S0065-2113(08)60569-6]
18. Katerji, N., J.W. Van Hoon, A. Hamdy and M. Mastrorilli. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agriculture Water Management, 62: 37-66. [DOI:10.1016/S0378-3774(03)00005-2]
19. Lin, C.S., M.R. Binns and L.P. Lefkovitch. 1986. Stability analysis: Where do we stand? Crop Science, 26: 894-900. [DOI:10.2135/cropsci1986.0011183X002600050012x]
20. Mahfoozi, S., A. Amini, M. Chaichi, S. Jasem, M. Nazeri, M.S. AbediOskooie, G. Aminzadeh and M. Rezaie. 2009. Study on grain yield stability and adaptability of winter wheat genotypes using different stability indices under terminal drought stress conditions. Seed and Plant Improvement Journal, 25(1): 65-82 (In Persian).
21. Mohammadi, R., S.S. Pourdad and A. Amri. 2008. Grain yield stability of spring safflower (Carthamustinctorius L.). Australian Journal of Agricultural Research, 59: 546-553. [DOI:10.1071/AR07273]
22. Munns, R., R.A. James and A. Lauchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043. [DOI:10.1093/jxb/erj100]
23. Pinthus, M.J. 1973. Estimate of genotype value: A personal method. Euphytica, 22: 121-123. [DOI:10.1007/BF00021563]
24. Purchase, J. 1997. Parametric analysis to describe Genotype × environment interaction and yield stability in winter wheat. Ph.D. Thesis. University of the Free State, South Africa, 84 pp.
25. Schoeman, L.J. 2003. Genotype × environment interaction in sunflower (Helianthus annuus) in South Africa. MSc. Thesis, Department of Agronomy, University of the Free State, Bloemfontein, 84 pp.
26. Shafi, B., K.A. Mahler, W.J. Price and D.L. Auld. 1992. Genotype × environment interaction effects on winter rapeseed yield and oil content. Rop Science, 32: 922-927. [DOI:10.2135/cropsci1992.0011183X003200040017x]
27. Shah Mohammai, M., H. Dehghani and M. Yousefi. 2005. Stability analysis of barley genotypes for cold zones in Iran. Agricultural and Natural Resources Sciences and Technology, 9(1): 143-154 (In Persian).
28. Shukla, G.K. 1972. Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29: 237-245. [DOI:10.1038/hdy.1972.87]
29. Soroush, H.R. and B. Rabiei. 2009. Evaluation of yield stability of rice genotypes in different locations of Guilan province. Journal of Agricultural Science, 18(4): 106-114 (In Persian).
30. Suadric, A., D. Simic and M. Vratric. 2006. Characterization of genotype by environment interactions in soybean breeding programs of South-East Europe. Plant Breeding, 125: 125-191. [DOI:10.1111/j.1439-0523.2006.01185.x]
31. Tai, G.C.C. 1971. Genotypic stability analysis and its application to potato regional trails. Crop Science, 19: 434-438.
32. Wricke, G. 1962. Ubereine methods zurerfassung der okologischenstreubeite in feldversuchen. Pflanzenzuecht, 47: 92-96.
33. Yan, W. 2001. GGEbiplot- a Windows application for graphical analysis of multi-environment trial data and other types of two- way data. Agronomy Journal, 93(5): 1111-1118. [DOI:10.2134/agronj2001.9351111x]
34. Yan, W. and I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42: 11-20. [DOI:10.2135/cropsci2002.0011]
35. Yan, W., L.A. Hunt, Q. Sheng and Z. Szlavnics. 2000. Cultivar evaluation and mega- environment investigation based on the GGE biplot. Crop Science, 40: 597-605. [DOI:10.2135/cropsci2000.403597x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb