دوره 11، شماره 29 - ( بهار 1398 )                   جلد 11 شماره 29 صفحات 8-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (3699 مشاهده)

شوری خاک یکی از مهم­ترین عوامل کاهش‌دهنده عملکرد محصولات کشاورزی می‌باشد. انتقال پیام SOS یکی از مهم­ترین مسیرهای تنظیم هموستازی یونی و از سازوکارهای مهم مقاومت گیاهان در برابر استرس‌های محیطی از جمله تنش شوری می ­باشد. با توجه به اینکه ریشه اولین اندام از گیاه در معرض شوری است، لذا نقش ژن­های دخیل در این مسیر و ارتباط آن با تحمل شوری بین دو ژنوتیپ موتانت جو "73-M4-30" و ژنوتیپ زرجو به‌عنوان والد مورد مطالعه قرار گرفت. در این تحقیق الگوی بیان ژن­هایHvSOS1،HvSOS2  (CIPK24) وHvSOS3  (CBL4) تحت غلظت شوری 300 میلی مولار و زمان­های صفر (کنترل)، 3، 6، 12، 24، 48، 72 و 96 ساعت بین دو ژنوتیپ بررسی شد. تجزیه RT-PCR کمی نشان داد که تحت تنش شوری، سطوح بیان این سه ژن در اندام ریشه ژنوتیپ موتانت متحمل به شوری در مقایسه با رقم والد آن در زمان اولیه 6 ساعت بسیار بیشتر و قوی­تر بود. بیان بالای همزمان این سه ژن در اندام ریشه ژنوتیپ موتانت بیانگر فعالیت آنتی­ پورتر Na+/H+ و خروج Na+ به فضای آپوپلاستی یا انتقال آن از ریشه به اندام هوایی می ­باشد. عدم شباهت در الگوی بیان ژن­های SOS بین دو ژنوتیپ موتانت متحمل به شوری و والد وحشی نشان می­ دهد که جهش می­تواند باعث تغییر توانایی ژنوتیپ موتانت جو متحمل در به­ کارگیری هومئوستازی یونی برای پاسخ به تنش شوری شود.

واژه‌های کلیدی: RT-PCR، Hordeum vulgareکمی، مرحله جوانه زنی
متن کامل [PDF 898 kb]   (1486 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات مولكولي
دریافت: 1396/2/9 | ویرایش نهایی: 1398/2/24 | پذیرش: 1396/5/22 | انتشار: 1398/2/18

فهرست منابع
1. Apse, M.P. and E. Blumwald. 2007. Na+ transport in plants. FEBS Letters, 581: 2247-2254. [DOI:10.1016/j.febslet.2007.04.014]
2. Chinnusamy, V., J. Zhu and J.K. Zhu. 2006. Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering, 27: 141-177. [DOI:10.1007/0-387-25856-6_9]
3. Garciadebla, B., H. Rosari and B. Benito. 2007. Cloning of two SOS1 transporters from the sea grass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. Plant Molecular Biology, 63: 479-490. [DOI:10.1007/s11103-006-9102-2]
4. Ghasemi Omran, V.O., A. Bagheri, G.A. Nematzadeh, A. Mirshamsi and N.A. Babaiian Jelodar. 2015. Isolation and Expression Analysis of Alsos1 Gene Under NaCl Stress in HalophyteGrass Aeluropus Littoralis Parl. Journal of Crop Breeding, 7(16): 60-69 (In Persian).
5. Greenway, H. and R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Plant Molecular Biology, 31: 149-190. [DOI:10.1146/annurev.pp.31.060180.001053]
6. Guo, Y., Q.S. Qiu, F.J. Quintero, J.M. Pardo, M. Ohta, C. Zhang, K.S. Schumaker and J.K. Zhu. 2004. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement of its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis. Plant Cell, 16: 435-449. [DOI:10.1105/tpc.019174]
7. Guo, Y., U. Halfter, M. Ishitani and J.K. Zhu. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 13: 1383-1400. [DOI:10.1105/TPC.010021]
8. Guo, P., M. Baum, S. Grando, S. Ceccarelli, G. Bai, R. Li, M. Korff, R. Varshney, A. Graner and J. Valkoun. 2009. Differentially expressed genes between drought tolerant an drought sensitive barely genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60: 3531-3544. [DOI:10.1093/jxb/erp194]
9. Halfter, U., M. Ishitani and J.K. Zhu. 2000. The arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences, USA, 97: 3735-3740. [DOI:10.1073/pnas.040577697]
10. Hasegawa, P.M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92: 19-31. [DOI:10.1016/j.envexpbot.2013.03.001]
11. Hauser, F. and T. Horie. 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. PlantCell Environ, 33: 552-565. [DOI:10.1111/j.1365-3040.2009.02056.x]
12. Hayashi, H. and N. Murata. 1998. Genetically engineered enhancement of salt tolerance in higher plants. Elsevier, Amsterdam, 133-148. [DOI:10.1016/B978-0-444-82884-2.50012-1]
13. Huertas, R., R. Olıas, Z. Eljakaoui, F.J. Galvez, J. Li, P.A. De Morales, A. Belver and M.P. Rodrıguez-Rosales. 2012. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant, Cell Environ, 35: 1467-1482. [DOI:10.1111/j.1365-3040.2012.02504.x]
14. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2): 32.
15. Kafi. M., A. Borzoee, M. Salehi, A. Kamandi, A. Masoumi and J. Nabati. 2009. Physiology of environmental stresses in plants. Iranian academic center for education, culture and research (ACECR), Mashad, 502 pp (In Persian).
16. Kiani, D., H. Soltanloo, S.S. Ramezanpour, A.A. Nasrolahnezhad Qumi, A. Yamchi, Kh. Zaynali Nezhad and E. Tavakol. 2017. A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Plantarum, 39: 90. [DOI:10.1007/s11738-017-2359-z]
17. Liu, J., M. Ishitani, U. Halfter, C.S. Kim and J.K. Zhu. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 97: 3730-3734. [DOI:10.1073/pnas.97.7.3730]
18. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−DDCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262]
19. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444: 139-158. [DOI:10.1016/j.abb.2005.10.018]
20. Maughan, P.J., T.B. Turner, C.E. Coleman, D.B. Elzinga, E.N. Jellen, J.A. Morales, J.A. Udall, D.J. Fairbanks and A. Bonifacio. 2009. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa. Chenopodium quinoa Willd. Genome, 52: 647-657. [DOI:10.1139/G09-041]
21. Martinez-Atienza, J., X. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu and J.M. Pardo. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143: 1001-1012. [DOI:10.1104/pp.106.092635]
22. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-658. [DOI:10.1146/annurev.arplant.59.032607.092911]
23. Niazian, M., M. No'mani and S.A.S. Noori. 2016. A Review on Biometrical Methods used for Salt Tolerance Breeding in Crops. Journal of Crop Breeding, 8(17): 24-41 (In Persian). [DOI:10.18869/acadpub.jcb.8.17.41]
24. Oh, D.H., Z. Ali, C.P. Hyeong, R.A. Bressan, J.Y. Dae and H.J. Bohnert. 2010. Consequences of SOS1 deficiency: Intracellular physiology and transcription. Plant Signaling Behavior, 766pp. [DOI:10.4161/psb.5.6.11777]
25. Oh, D.H., Q. Gong, A. Ulanov, Q. Zhang, Y. Li, W. Ma, D.J. Yun, R.A. Bressan and H.J. Bohnert. 2007. Sodium stress in the Halophyte thellungiella halophila and transcriptional changes in a thsos1- rna interference line. Journal of Integrative Plant Biology, 49: 1484-1496. [DOI:10.1111/j.1672-9072.2007.00548.x]
26. O.H, D.H., S.Y. Lee, R.A. Bressan, D.J. Yun and H.J. Bohnert. 2010b. Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 61(4): 1205-1213. [DOI:10.1093/jxb/erp391]
27. Pfaffl, M.W., G.W. Horgan and L. Dempfle. 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9): 36. [DOI:10.1093/nar/30.9.e36]
28. Qiu, Q.S., Y. Guo, M.A. Dietrich, K.S. Schumacher and J.K. Zhu. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceeding of the National Academy of Sciences of the USA, 99: 8436-8441. [DOI:10.1073/pnas.122224699]
29. Quintero, F.J., M. Ohta, H. Shi, J.K. Zhu and J.M. Pardo. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99: 9061-9066. [DOI:10.1073/pnas.132092099]
30. Sahi, C., A. Singh, E. Blumwald and A. Grover. 2006. Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 127: 1-9. [DOI:10.1111/j.1399-3054.2005.00610.x]
31. Shi, H., B.H. Lee, S.J. Wu and J.K. Zhu. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21: 81-85. [DOI:10.1038/nbt766]
32. Shi, H., M. Ishitani, C. Kim and J.K. Zhu. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97: 6896-6901. [DOI:10.1073/pnas.120170197]
33. Shi, H., F.J. Quintero, J.M. Pardo and J.K. Zhu. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long distance Na(+) transport in plants. Plant Cell, 14: 465-477. [DOI:10.1105/tpc.010371]
34. Takahashia, R., S. Liub and T. Takano. 2009. Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. Journal of Plant Physiology, 166: 301-309. [DOI:10.1016/j.jplph.2008.04.002]
35. Teige, M., E. Scheikl, T. Eulgem, R. Doczi, K. Ichimura, K. Shinozaki, J.L. Dangl and H. Hirt. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 15(1): 141-52. [DOI:10.1016/j.molcel.2004.06.023]
36. Xu, H., X. Jiang, K. Zhan, X. Cheng, X. Chen, J.M. Pardo and D. Cui. 2008. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 473: 8-15. [DOI:10.1016/j.abb.2008.02.018]
37. Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu and Z.H. Gong. 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2: 22-31. [DOI:10.1093/mp/ssn058]
38. Zhang, H.X. and E. Blumwald. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnology, 19: 765-768. [DOI:10.1038/90824]
39. Zhou, G.A., Y. Jiang, Q. Yang, J.F. Wang, J.I. Huang and H.S. Zhang. 2006. Isolation and characterization of a new Na+/H+ antiporter gene OsNHA1 from rice. Oryza sativa L. DNA Sequence, 17: 24-30. [DOI:10.1080/10425170500224263]
40. Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6: 441-445. [DOI:10.1016/S1369-5266(03)00085-2]
41. Apse, M.P. and E. Blumwald. 2007. Na+ transport in plants. FEBS Letters, 581: 2247-2254. [DOI:10.1016/j.febslet.2007.04.014]
42. Chinnusamy, V., J. Zhu and J.K. Zhu. 2006. Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering, 27: 141-177. [DOI:10.1007/0-387-25856-6_9]
43. Garciadebla, B., H. Rosari and B. Benito. 2007. Cloning of two SOS1 transporters from the sea grass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. Plant Molecular Biology, 63: 479-490. [DOI:10.1007/s11103-006-9102-2]
44. Ghasemi Omran, V.O., A. Bagheri, G.A. Nematzadeh, A. Mirshamsi and N.A. Babaiian Jelodar. 2015. Isolation and Expression Analysis of Alsos1 Gene Under NaCl Stress in HalophyteGrass Aeluropus Littoralis Parl. Journal of Crop Breeding, 7(16): 60-69 (In Persian).
45. Greenway, H. and R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Plant Molecular Biology, 31: 149-190. [DOI:10.1146/annurev.pp.31.060180.001053]
46. Guo, Y., Q.S. Qiu, F.J. Quintero, J.M. Pardo, M. Ohta, C. Zhang, K.S. Schumaker and J.K. Zhu. 2004. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement of its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis. Plant Cell, 16: 435-449. [DOI:10.1105/tpc.019174]
47. Guo, Y., U. Halfter, M. Ishitani and J.K. Zhu. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 13: 1383-1400. [DOI:10.1105/TPC.010021]
48. Guo, P., M. Baum, S. Grando, S. Ceccarelli, G. Bai, R. Li, M. Korff, R. Varshney, A. Graner and J. Valkoun. 2009. Differentially expressed genes between drought tolerant an drought sensitive barely genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60: 3531-3544. [DOI:10.1093/jxb/erp194]
49. Halfter, U., M. Ishitani and J.K. Zhu. 2000. The arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences, USA, 97: 3735-3740. [DOI:10.1073/pnas.040577697]
50. Hasegawa, P.M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92: 19-31. [DOI:10.1016/j.envexpbot.2013.03.001]
51. Hauser, F. and T. Horie. 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. PlantCell Environ, 33: 552-565. [DOI:10.1111/j.1365-3040.2009.02056.x]
52. Hayashi, H. and N. Murata. 1998. Genetically engineered enhancement of salt tolerance in higher plants. Elsevier, Amsterdam, 133-148. [DOI:10.1016/B978-0-444-82884-2.50012-1]
53. Huertas, R., R. Olıas, Z. Eljakaoui, F.J. Galvez, J. Li, P.A. De Morales, A. Belver and M.P. Rodrıguez-Rosales. 2012. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant, Cell Environ, 35: 1467-1482. [DOI:10.1111/j.1365-3040.2012.02504.x]
54. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2): 32.
55. Kafi. M., A. Borzoee, M. Salehi, A. Kamandi, A. Masoumi and J. Nabati. 2009. Physiology of environmental stresses in plants. Iranian academic center for education, culture and research (ACECR), Mashad, 502 pp (In Persian).
56. Kiani, D., H. Soltanloo, S.S. Ramezanpour, A.A. Nasrolahnezhad Qumi, A. Yamchi, Kh. Zaynali Nezhad and E. Tavakol. 2017. A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Plantarum, 39: 90. [DOI:10.1007/s11738-017-2359-z]
57. Liu, J., M. Ishitani, U. Halfter, C.S. Kim and J.K. Zhu. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 97: 3730-3734. [DOI:10.1073/pnas.97.7.3730]
58. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−DDCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262]
59. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444: 139-158. [DOI:10.1016/j.abb.2005.10.018]
60. Maughan, P.J., T.B. Turner, C.E. Coleman, D.B. Elzinga, E.N. Jellen, J.A. Morales, J.A. Udall, D.J. Fairbanks and A. Bonifacio. 2009. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa. Chenopodium quinoa Willd. Genome, 52: 647-657. [DOI:10.1139/G09-041]
61. Martinez-Atienza, J., X. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu and J.M. Pardo. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143: 1001-1012. [DOI:10.1104/pp.106.092635]
62. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-658. [DOI:10.1146/annurev.arplant.59.032607.092911]
63. Niazian, M., M. No'mani and S.A.S. Noori. 2016. A Review on Biometrical Methods used for Salt Tolerance Breeding in Crops. Journal of Crop Breeding, 8(17): 24-41 (In Persian). [DOI:10.18869/acadpub.jcb.8.17.41]
64. Oh, D.H., Z. Ali, C.P. Hyeong, R.A. Bressan, J.Y. Dae and H.J. Bohnert. 2010. Consequences of SOS1 deficiency: Intracellular physiology and transcription. Plant Signaling Behavior, 766pp. [DOI:10.4161/psb.5.6.11777]
65. Oh, D.H., Q. Gong, A. Ulanov, Q. Zhang, Y. Li, W. Ma, D.J. Yun, R.A. Bressan and H.J. Bohnert. 2007. Sodium stress in the Halophyte thellungiella halophila and transcriptional changes in a thsos1- rna interference line. Journal of Integrative Plant Biology, 49: 1484-1496. [DOI:10.1111/j.1672-9072.2007.00548.x]
66. O.H, D.H., S.Y. Lee, R.A. Bressan, D.J. Yun and H.J. Bohnert. 2010b. Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 61(4): 1205-1213. [DOI:10.1093/jxb/erp391]
67. Pfaffl, M.W., G.W. Horgan and L. Dempfle. 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9): 36. [DOI:10.1093/nar/30.9.e36]
68. Qiu, Q.S., Y. Guo, M.A. Dietrich, K.S. Schumacher and J.K. Zhu. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceeding of the National Academy of Sciences of the USA, 99: 8436-8441. [DOI:10.1073/pnas.122224699]
69. Quintero, F.J., M. Ohta, H. Shi, J.K. Zhu and J.M. Pardo. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99: 9061-9066. [DOI:10.1073/pnas.132092099]
70. Sahi, C., A. Singh, E. Blumwald and A. Grover. 2006. Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 127: 1-9. [DOI:10.1111/j.1399-3054.2005.00610.x]
71. Shi, H., B.H. Lee, S.J. Wu and J.K. Zhu. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21: 81-85. [DOI:10.1038/nbt766]
72. Shi, H., M. Ishitani, C. Kim and J.K. Zhu. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97: 6896-6901. [DOI:10.1073/pnas.120170197]
73. Shi, H., F.J. Quintero, J.M. Pardo and J.K. Zhu. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long distance Na(+) transport in plants. Plant Cell, 14: 465-477. [DOI:10.1105/tpc.010371]
74. Takahashia, R., S. Liub and T. Takano. 2009. Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. Journal of Plant Physiology, 166: 301-309. [DOI:10.1016/j.jplph.2008.04.002]
75. Teige, M., E. Scheikl, T. Eulgem, R. Doczi, K. Ichimura, K. Shinozaki, J.L. Dangl and H. Hirt. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 15(1): 141-52. [DOI:10.1016/j.molcel.2004.06.023]
76. Xu, H., X. Jiang, K. Zhan, X. Cheng, X. Chen, J.M. Pardo and D. Cui. 2008. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 473: 8-15. [DOI:10.1016/j.abb.2008.02.018]
77. Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu and Z.H. Gong. 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2: 22-31. [DOI:10.1093/mp/ssn058]
78. Zhang, H.X. and E. Blumwald. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnology, 19: 765-768. [DOI:10.1038/90824]
79. Zhou, G.A., Y. Jiang, Q. Yang, J.F. Wang, J.I. Huang and H.S. Zhang. 2006. Isolation and characterization of a new Na+/H+ antiporter gene OsNHA1 from rice. Oryza sativa L. DNA Sequence, 17: 24-30. [DOI:10.1080/10425170500224263]
80. Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6: 441-445. [DOI:10.1016/S1369-5266(03)00085-2]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.