Volume 10, Issue 26 (9-2018)                   jcb 2018, 10(26): 146-152 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagherikia S, Pahlevani M, Yamchi A, Zenalinezhad K, Mostafaie A. (2018). Expression of Genes Involved in Fructan Metabolism in wheat Stem under Water Deficit Stress. jcb. 10(26), 146-152. doi:10.29252/jcb.10.26.146
URL: http://jcb.sanru.ac.ir/article-1-705-en.html
Department of plant breeding & biotechnology, Faculty of plant production, Agricultural Sciences & Natural Resources University of Gorgon
Abstract:   (2524 Views)

Water deficient stress is one of the major limiting factors of wheat production in arid and semiarid areas of the world such as Iran. Under water deficient stress photosynthesis is limited and remobilization of assimilates stored in stems is more important to grain filling. In order to molecular analysis of fructan remobilization in wheat stem (penultimate) under terminal water deficit stress, T-65-7-1 mutant line (M7, the results of gamma irradiation) along with its wild type (cv. Tabasi), in terms of relative gene expression involved in biosynthesis and hydrolysis of fructan and transport of sucrose were studied. Water deficit treatment (30-40% field capacity) initiated at full heading stage (Zadoks 60) and sampling was conducted at two stages (7 and 21 days post anthesis). In the T-65-7-1 mutant line, a significant increase was observed in expression levels of genes involved in fructan biosynthesis (1-SST and 6-SFT), fructan biosynthesis (6-FEH) as well as sucrose transport (SUT1 and SUT2) compared to the wild type (cv. Tabasi). This event is due to more remobilization in T-65-7-1 mutant compared to the wild type. In T-65-7-1 mutant, during early grain filling period, 1-SST and 6-SFT produces more storage of fructan in the stem. Also, during rapid grain filling stage, 6-FEH produces more sucrose and finally, SUT1 and SUT2 transports more sucrose from stem to grain. In wheat breeding programs, 1-SST, 6-SFT, 6-FEH, SUT1 and SUT2 can be used as indicators for selecting genotypes with high fructan content and more remobilization.

Full-Text [PDF 607 kb]   (1002 Downloads)    
Type of Study: Research | Subject: اصلاح نباتات مولكولي
Received: 2017/01/14 | Revised: 2018/09/26 | Accepted: 2017/04/29 | Published: 2018/09/26

1. Aoki, N., G.N. Scofield, X.D. Wang, J.W. Patrick, C.E. Offler and R.T. Furbank. 2004. Expression and localisation analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues. Planta, 219: 176-84. [DOI:10.1007/s00425-004-1232-7]
2. Bagherikia, S., M.H. Pahlevani, A. Yamchi, K. Zenalinezhad and A. Mostafaie. 2017. Molecular and physiological analysis of flag leaf senescence and remobilization of assimilates in bread wheat under terminal drought stress. Journal of Agricultural Biotechnology, 8(4): 1-16.
3. Bazargani, M.M., E. Sarhadi, A.A.S. Bushehri, A. Matros, H.P. Mock, M.R. Naghavi, V. Hajihoseini, M. Mardi, M.R. Hajirezaei and F. Moradi. 2011. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. Journal of Proteomics, 74: 59-73. [DOI:10.1016/j.jprot.2011.05.015]
4. Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica, 100: 77-83. [DOI:10.1023/A:1018303922482]
5. Boyer, J. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiology, 46: 233-35. [DOI:10.1104/pp.46.2.233]
6. Daloso, D.M., L. Anjos and A.R. Fernie. 2016. Roles of sucrose in guard cell regulation. New Phytologist, 211: 809-818. [DOI:10.1111/nph.13950]
7. Deol, K.K., S. Mukherjee, F. Gao, A. Brûlé-Babel, C. Stasolla and B.T. Ayele. 2013. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.). BMC Plant Biology, 13: 181 pp. [DOI:10.1186/1471-2229-13-181]
8. Distelfeld, A., R. Avni and A.M. Fischer. 2014. Senescence, nutrient remobilization, and yield in wheat and barley. Journal of Experimental Botany, 65: 3783-98. [DOI:10.1093/jxb/ert477]
9. Elahi, K., R. Haghparast, R. Mohammadi, M. Niazian and R. Rajabi. 2011. Evaluation of Bread Wheat Genotypes for Grain Yield and Physiomorphological Traits Related to Drought Tolerance inParticipatory Plant Breeding Program . Journal of Crop Breeding, 3: 1-14 (In Persian).
10. Farooq, M., M. Hussain and K.H. Siddique. 2014. Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33: 331-49. [DOI:10.1080/07352689.2014.875291]
11. Gebbing, T. 2003. The enclosed and exposed part of the peduncle of wheat (Triticum aestivum)-spatial separation of fructan storage. New Phytologist, 159: 245-52. [DOI:10.1046/j.1469-8137.2003.00799.x]
12. Gonçalves, S., J. Cairney and J. Maroco. 2005. Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta, 222: 556-63. [DOI:10.1007/s00425-005-1562-0]
13. Joudi, M., A. Ahmadi, V. Mohamadi, A. Abbasi, R. Vergauwen, H. Mohammadi and W. Van den Ende. 2012. Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiologia Plantarum, 144: 1-12. [DOI:10.1111/j.1399-3054.2011.01517.x]
14. Khoshro, H.H., A. Taleei, M.R. Bihamta, M. Shahbazi, A. Abbasi and S.S. Ramezanpour. 2014. Expression analysis of the genes involved in accumulation and remobilization of assimilates in wheat stem under terminal drought stress. Plant Growth Regulation, 74: 165-76. [DOI:10.1007/s10725-014-9908-x]
15. Lemoine, R., S. La Camera, R. Atanassova, F. Dédaldéchamp, T. Allario, N. Pourtau, J.L. Bonnemain, M. Laloi, P. Coutos-Thévenot and L. Maurousset. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4: 272 pp. [DOI:10.3389/fpls.2013.00272]
16. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29: 45 pp. [DOI:10.1093/nar/29.9.e45]
17. Scofield, G.N., T. Hirose, N. Aoki and R.T. Furbank. 2007. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. Journal of Experimental Botany, 58: 3155-69. [DOI:10.1093/jxb/erm153]
18. Sharbatkhari, M., Z.S. Shobbar, S. Galeshi and B. Nakhoda. 2016. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Planta, 244: 191-202. [DOI:10.1007/s00425-016-2497-3]
19. Sharma-Natu, P. and M. Ghildiyal. 2005. Potential targets for improving photosynthesis and crop yield. Current Science, 88: 1918-28.
20. Shewry, P.R., R.A. Mitchell, P. Tosi, Y. Wan, C. Underwood, A. Lovegrove, J. Freeman, G.A. Toole, E.C. Mills and J.L. Ward. 2012. An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science, 56: 21-30. [DOI:10.1016/j.jcs.2011.11.007]
21. Subbarao, G.V., N.H. Nam, Y.S. Chauhan and C. Johansen. 2000. Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. Journal of Plant Physiology, 157: 651-59. [DOI:10.1016/S0176-1617(00)80008-5]
22. Tuberosa, R. and S. Salvi. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11: 405-12. [DOI:10.1016/j.tplants.2006.06.003]
23. Van den Ende, W., S. Clerens, R. Vergauwen, L. Van Riet, A. Van Laere, M. Yoshida and A. Kawakami. 2003. Fructan 1-exohydrolases. β (2,1)-trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms. Plant Physiology, 131: 621-31. [DOI:10.1104/pp.015305]
24. Van den Ende, W. and S.K. El-Esawe. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses?. Environmental and Experimental Botany, 108: 4-13. [DOI:10.1016/j.envexpbot.2013.09.017]
25. Verspreet, J., S. Cimini, R. Vergauwen, E. Dornez, V. Locato, K. Le Roy, L. De Gara, W. Van den Ende, J.A. Delcour and C.M. Courtin. 2013. Fructan metabolism in developing wheat (Triticum aestivum L.) kernels. Plant and Cell Physiology, 54: 2047-2057. [DOI:10.1093/pcp/pct144]
26. Wardlaw, I. and J. Willenbrink. 2000. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytologist, 148: 413-22. [DOI:10.1046/j.1469-8137.2000.00777.x]
27. Xu, S., C. Chu, M. Harris and C. Williams. 2010. Comparative analysis of genetic background in eight near-isogenic wheat lines with different H genes conferring resistance to Hessian fly. Genome, 54: 81-89. [DOI:10.1139/G10-095]
28. Xue, G.P., J. Drenth, D. Glassop, M. Kooiker and C.L. McIntyre. 2013. Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat. Plant Molecular Biology, 81: 71-92. [DOI:10.1007/s11103-012-9983-1]
29. Xue, G.P., C.L. McIntyre, D. Glassop and R. Shorter. 2008. Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 67: 197-214. [DOI:10.1007/s11103-008-9311-y]
30. Xue, G.P., C.L. McIntyre, C.L.D. Jenkins, D. Glassop, A.F. van Herwaarden and R. Shorter. 2008. Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat. Plant Physiology, 146: 441-54. [DOI:10.1104/pp.107.113076]
31. Yang, J., J. Zhang, Z. Wang, Q. Zhu and L. Liu. 2004. Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta, 220: 331-43. [DOI:10.1007/s00425-004-1338-y]
32. Zadoks, J.C., T.T. Chang and C.F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Research, 14: 415-21. [DOI:10.1111/j.1365-3180.1974.tb01084.x]
33. Zhang, J., B. Dell, E. Conocono, I. Waters, T. Setter and R. Appels. 2009. Water deficits in wheat: fructan exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytologist, 181: 843-50. [DOI:10.1111/j.1469-8137.2008.02713.x]
34. Zhang, J., B. Dell, W. Ma, R. Vergauwen, X. Zhang, T. Oteri, A. Foreman, D. Laird and W. Van den Ende. 2016. Contributions of Root WSC during Grain Filling in Wheat under Drought. Frontiers in Plant Science, 7: 904 pp. [DOI:10.3389/fpls.2016.00904]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb