دوره 10، شماره 28 - ( زمستان97 1397 )                   جلد 10 شماره 28 صفحات 73-82 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahmani Asl R, Bernousi I, Abdollahi Mandulakani B. Study of Genetic Structure and Diversity of Iranian Wheat Lines and Cultivars using SSR Markers. jcb. 2018; 10 (28) :73-82
URL: http://jcb.sanru.ac.ir/article-1-678-fa.html
رحمانی اصل رخساره، برنوسی ایرج، عبدالهی مندولکانی بابک. بررسی ساختار و تنوع ژنتیکی در ارقام و لاین های گندم ایرانی با استفاده از نشانگرهای SSR . پژوهشنامه اصلاح گیاهان زراعی. 1397; 10 (28) :73-82

URL: http://jcb.sanru.ac.ir/article-1-678-fa.html


دانشگاه ارومیه
چکیده:   (588 مشاهده)

بهبود ژنتیکی گیاهان زراعی، از جمله گندم متکی بر وجود تنوع ژنتیکی است. در این تحقیق ساختار و تنوع ژنتیکی 99 لاین و 49 رقم گندم با استفاده از 20 جفت آغازگرSSR  بررسی شد. از آغازگرهای مورد استفاده، 19 آغازگر در بین ارقام و لاین ­ها مورد مطالعه چند­شکل بودند و در مجموع 67 آلل چند شکل تکثیر شد. تعداد آلل در هر مکان از 1 (Xgwm44) تا 7 (Xgwm47) متغیر و میانگین آن 5/3 بود. میانگین هتروزیگوسیتی مورد انتظار (He) از 71/0 (Xgwm149) تا 27/0 (Xgwm469) متغیر بود. میانگین محتوای اطلاعات چند شکلی (PIC) و بیشترین شاخص اطلاعاتی شانون (I) به ترتیب 52/0 و 88/0 بود. مقادیر تعداد آلل، شاخص اطلاعاتی شانون و میانگین هتروزیگوسیتی مورد انتظار در لاین­ های مورد مطالعه کمی بیشتر از ارقام بود. متوسط ضرایب تمایز ژنی بین لاین ­ها و ارقام (Fst) و مقدار جریان ژنی (Nm) برای تمامی آغازگرها به ترتیب برابر 067/0 و 96/6 بود. تجزیه واریانس مولکولی (AMOVA) سطح بالایی از تنوع ژنتیکی را درون لاین­ ها + ارقام (92%) در مقایسه با بین لاین­ ها و ارقام (8%) نشان داد. تجزیه خوشه ­ای بر اساس ضرایب تشابه تطابق ساده به روش UPGMA انجام شد. دامنه ضرایب تشابه از 40/0 تا 1 متغیر و میانگین آن 7/0 بود. بر اساس تجزیه خوشه­ ای 148 لاین و رقم گندم در 5 گروه اصلی قرار گرفت. برخی لاین ها که در گروه­ های مشابه قرار گرفتند از نظر منشاء جغرافیایی نزدیک به هم بودند. شباهت ژنتیکی بالای بین ارقام می ­تواند نشان­ دهنده کاهش پایه ژنتیکی ژرم ­پلاسم گندم نان­ در ایران باشد. به هر حال مطابق با فاصله ژنتیکی بین گروه ­های مختلف، لاین­ ها می ­توانند به عنوان والدین بالقوه در برنامه ­های اصلاحی گندم مورد استفاده قرار بگیرند.
 

متن کامل [PDF 1113 kb]   (132 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: ۱۳۹۵/۱۰/۵ | ویرایش نهایی: ۱۳۹۷/۱۲/۱۱ | پذیرش: ۱۳۹۷/۱/۱۴ | انتشار: ۱۳۹۷/۱۲/۱۱

فهرست منابع
1. Abdollahi Mandoulakani, B., A.A. Shahnejat-Bushehri, B.E. Sayed Tabatabaei, S. Torabi and A. Mohammadi Hajiabad. 2010. Genetic diversity among wheat cultivars using molecular markers. Journal of Crop Improvement, 24: 299-309. [DOI:10.1080/15427528.2010.496668]
2. Ahmed, M. 2002. Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome, 45: 646-651. [DOI:10.1139/g02-028]
3. Akkaya, M.S. and E.B. Buykunal-Bal. 2004. Assessment of genetic variation of bread wheat varieties using microsatellite Euphytica, 135: 179-185. [DOI:10.1023/B:EUPH.0000014908.02499.41]
4. Archak, S., A.B. Gaikwad, D. Gautam, E.V. Rao, K.R. Swamy, and J.L. Karihaloo. 2003. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 3: 362-369. [DOI:10.1139/g03-016]
5. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl, L.M. Albright D.M. Coen and A. Varki. 1995. Current protocols in molecular biology. Jon Wiley, New York, 4725 pp.
6. Bered, F., J.F. Barbosa-Neto and F.I.F. de Carvalho. 2002. Genetic variability in common wheat germplasm based on coefficients of parentage. Genetic Molecular Biology, 25: 211-215. [DOI:10.1590/S1415-47572002000200015]
7. Carvalho, A., H. Guedes-Pinto, P. Martin-Lopes and J. Lima-Brito. 2010. Genetic variability of old Portuguese bread wheat cultivar assayed by IRAP and REMAP markers. Annual Applied Biology, 156: 337- 345. [DOI:10.1111/j.1744-7348.2010.00390.x]
8. Dashchi, S., B. Abdollahi Mandoulakani, R. Darvishzadeh and I. Bernousi. 2013. Molecular similarity relationships among Iranian bread wheat cultivars and breeding lines using ISSR markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40: 254-260. [DOI:10.15835/nbha4027949]
9. Devos, K.M. and M.D. Gale. 1992. The use of random amplified polymorphism DNA markers in wheat. Theoretical and Applied Genetics, 84: 567-572. [DOI:10.1007/BF00224153]
10. Dreisigacker, S., P. Zhang, M.L. Warburton, B. Skovmand, D. Hoisington and A.E. Melchinger. 2005. Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Science, 45: 653-661. [DOI:10.2135/cropsci2005.0653]
11. Gorji, A.H. and M. Zolnoori. 2011. Genetic diversity in hexaploid wheat genotypes using microsatellite markers. Asian Journal of Biological Sciences, 3: 368-377. [DOI:10.3923/ajbkr.2011.368.377]
12. Habash, D.Z., Z. Kehel and M. Nachit. 2009. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. Journal of Experimental Botany, 60: 2805-2815. [DOI:10.1093/jxb/erp211]
13. Huang, X.Q., A. Borner, M.S. Roder and M.W. Ganal. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics, 105: 699-707. [DOI:10.1007/s00122-002-0959-4]
14. Jamalirad, S., A. Mohammadi, M. Khodarahmi and M. Toorchi. 2008. Assessing genetic relationships of bread wheat varieties based on allelic diversity of microsatellite markers. Modern Genetics Journal, 1: 79-89 (In Persian).
15. Khalighi, M., A. Arzani and M.M. Poursiahbidi. 2008. Assessment of genetic diversity in Triticum spp. and Aegilops spp. Using AFLP markers. African Journal of Biotechnology, 7: 546-552.
16. Ma, Z.Q., M.S. Roder and M.E. Sorrells. 1996. Frequencies and sequence characteristics of di-, tri-, and tetra nucleotide microsatellites in wheat. Genome, 39: 123-130. [DOI:10.1139/g96-017]
17. Mir, R.R., J. Kumar, H.S. Balyan and P.K. Gupta. 2012. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last100 years. Genetic Resource Crop Evolution, 59: 717-726. [DOI:10.1007/s10722-011-9713-6]
18. Mohammadi, S.A., M. Khodarahmi, S. Jamalirad and M.R. Jalal Kamali. 2009. Genetic diversity in a collection of old and new bread wheat cultivars from Iran as revealed by simple sequence repeat-based analysis. Annual Applied Biology, 154: 67-76. [DOI:10.1111/j.1744-7348.2008.00273.x]
19. Mollaheydari Bafghi, R., A. Baghizadeh, G.H. Mohammadi-Nejad and B. Nakhoda. 2014. Assessment of genetic diversity in Iranian wheat (Triticum aestivum L.) cultivars and lines using microsatellite markers. Journal of Plant Molecular Breeding 2(1): 74-89.
20. Nasri, Sh., B. Abdollahi Mandoulakani, R. Darvishzadeh and I Bernousi. 2013. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochemical Genetics, 51: 927-943. [DOI:10.1007/s10528-013-9618-5]
21. Pahlavani, S., A. Izanloo, S. Parsa and M.G. Ghaderi. 2016. Association between grain quality traits and SSR molecular markers in some bread wheat genotypes. Journal of Crop Breeding, 8(19): 25-36 (In Persian).
22. Roder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy and M.W. Ganal. 1998. A microsatellite map of wheat. Journal Genetics Society of America, 149: 2007-2023.
23. Roussel, V., J. Koenig, M. Beckert and F. Balfourier. 2004. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programs. Theoretical and Applied Genetics, 108: 920-930. [DOI:10.1007/s00122-003-1502-y]
24. Saghai-Maroof M.A., R.M. Biyashev, G.P. Yang, Q.F. Zhang and A.W. Allard. 1994. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 91:5466-5470. [DOI:10.1073/pnas.91.12.5466]
25. Saker, M., M. Nagchtigall and T.A. Kuehne. 2005. Comparative assessment of DNA fingerprinting by RAPD, SSR and AFLP in genetic analysis of some barley genotypes. Egyptian Journal of Genetics and Cytology, 34: 81-97.
26. Sardouie-Nasab, S., G.h. Mohammadi-Nejad and B. Nakhoda. 2013. Assessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance. Journal of Plant Molecular Breeding, 2: 28-39.
27. Schuster, I., E.S.N. Vieira, G.J. da Silva, F.A. Franco and V.S. Marchioro. 2009. Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers. Genetic Molecular Biology, 32: 557-563. [DOI:10.1590/S1415-47572009005000045]
28. SenturkAkfirat, F. and A. AltinkutUncuoglu. 2013. Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers. Biochemical Genetics, 51: 223-229. [DOI:10.1007/s10528-012-9557-6]
29. Talbert, L.E., N.K. Blake, P.W. Chee, T.K. Blake and G.M. Magyar. 1994. Evaluation of sequence-tagged-site-facilitated PCR products as molecular markers in wheat. Theoretical and Applied Genetics, 87: 789-794. [DOI:10.1007/BF00221130]
30. Zergani, M., G. Ranjbar and S. Ebrahimnezhad. 2015. Molecular assessment of genetic diversity among bread wheat (Triticum aestivum L.) doubled haploid lines using SSR markers. Journal of Crop Breeding, 7(15): 88-95 (In Persian).
31. Zhangh, D. and M.H. Godfry. 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 12: 563-584. [DOI:10.1046/j.1365-294X.2003.01773.x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Crop Breeding

Designed & Developed by : Yektaweb