دوره 12، شماره 33 - ( بهار 1399 )                   جلد 12 شماره 33 صفحات 56-42 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه پیام نور
چکیده:   (2133 مشاهده)

     بمنظور ارزیابی تغییرات الگوی پروتئینی ارقام متحمل و حساس گندم به تنش خشکی در مرحله گیاهچه­ ای و شناخت مکانیسم تحمل به تنش در آنها، دو رقم گندم بهاره شامل کویر (بعنوان رقم متحمل) و بهار (بعنوان رقم حساس) در اطاقک رشد کشت شدند. تجزیه پروتئوم از طریق الکتروفورز دوبعدی و رنگ ­آمیزی کوماسی بلو برای دو رقم انجام شد و بترتیب تعداد 20 و 86 لکه پروتئینی تکرارپذیر دارای تفاوت معنی ­دار بین تیمارهای شاهد و تنش خشکی در رقم کویر و بهار مشخص شدند. با استفاده از روش MALDI-TOF/TOF تعداد 18 و 84 عدد از لکه­ های پروتئینی در رقم کویر و بهار شناسایی شدند. در مجموع کلیه­ پروتئین­ های دارای تغییر بیان معنی ­دار مربوط به رقم کویر در شش گروه عملکردی تفکیک شدند که شامل چرخه کالوین (هفت لکه پروتئینی)، واکنش نوری فتوسنتز (چهار لکه)، اسمیلاسیون نیتروژن و انتقال پروتون (دو لکه)، بیوسنتز نشاسته و گلیکولیز (یک لکه) و پروتئین­های ناشناخته (سه لکه) بودند. تعداد گروه­ های عملکردی پروتئین­ ها در رقم بهار تنوع بیشتری داشت و در 11 گروه عملکردی قرار گرفتند، در حالی که در این رقم نیز مانند رقم کویر بیشترین درصد پروتئین­ ها مربوط به چرخه کالوین (35 لکه پروتئینی)، واکنش نوری فتوسنتز (22 لکه)، اسمیلاسیون نیتروژن (هشت لکه) و انتقال پروتون (پنج لکه) بودند. بطور کلی، در رقم کویر بیشترین پروتئین­­ های مربوط به چرخه کالوین، فروکتوز-بیس فسفات آلدولاز (سه لکه) و پیش ماده زیرواحد کوچک روبیسکو (دو لکه) بودند. در حالی که در رقم بهار بیشترین پروتئین­ها در چرخه کالوین، به ترتیب شامل پروتئین روبیسکو اکتیواز A (هفت لکه)،  فروکتوز 1 و 6-بیس فسفات آلدولاز (شش لکه) و زیر واحد بزرگ کاتالیز کننده روبیسکو (پنج لکه) بودند. از طرف دیگر در رقم بهار بیشترین پروتئین ­ها درگروه واکنش نوری فتوسنتز مربوط به، پروتئین­ های OEC (12 لکه) بودند. در حالی که در رقم کویر از هر پروتئین کمپلکس (Cyt) b6/f، پروتئین متصل شده به کلروفیل  a/b، CYP38 و HCF136 یک پروتئین تحت تنش القا شدند. همچنین در ارقام کویر و بهار بیشترین پروتئین­ ها درگروه اسمیلاسیون نیتروژن، آنزیم  گلوتامین سنتتاز (GS) بود. در مجموع این نتایج، به شناسایی و درک بهتر مسیرهای متابولیکی و پروتئین ­های مهم تر و مؤثرتر در تحمل و حساسیت گندم کمک خواهد کرد.

متن کامل [PDF 570 kb]   (805 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات مولكولي
دریافت: 1395/2/7 | ویرایش نهایی: 1399/2/29 | پذیرش: 1398/10/15 | انتشار: 1399/2/29

فهرست منابع
1. Ali, G.M. and S. Komatsu. 2006. Proteomic Analysis of Rice Leaf Sheath during Drought Stress. Journal of Proteome Research, 5(2): 396-403. [DOI:10.1021/pr050291g]
2. Arias, D. 2007. Calibration of LAI-2000 to Estimate Leaf Area Index and Assessment of its Relationship with stand productivity in six Native and Introduced tree Species in costarica. Forest Ecology and Management, 247: 85-193. [DOI:10.1016/j.foreco.2007.04.039]
3. Bray, E.A. 2002. Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: An analysis using microarray and differential expression data. Annals of Botany, 89: 803-811. [DOI:10.1093/aob/mcf104]
4. Caruso, G., C. Cavaliere, P. Foglia, R. Gubbiotti, R. Samperi and A. Laganà. 2009. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Science, 177: 570-576. [DOI:10.1016/j.plantsci.2009.08.007]
5. Chang, W.W., L. Huang, M. Shen, C. Webster, A.L. Burlingame and J.K. Roberts. 2000. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment and identification of proteins by mass spectrometry. Plant Physiology, 122: 295-318. [DOI:10.1104/pp.122.2.295]
6. Costa, R., N. Bahrman, J.M. Frigerio, A. Kremer and C. Plomion. 1998. Water deficit-response proteins in maritime pines. Plant Molecular Biology, 38: 587-596. [DOI:10.1023/A:1006006132120]
7. Damerval, C., D. De Vienne, M. Zivy and H. Thiellement. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling roteins. Electrophoresis, 7: 52-4. [DOI:10.1002/elps.1150070108]
8. Demirevska, K., D. Zasheva, R. Dimitrov, L. Simova-Stoilova, M. Stamenova, and M. Feller. 2009. Drought stress effects on rubisco in wheat: Changes in the rubisco large subunit. Acta Physiologiae Plantarum, 31: 1129-1138. [DOI:10.1007/s11738-009-0331-2]
9. Derogar, H., B. Fakheri, N. Mehdinezhad and R. Mohammadi. 2019. Evaluation of some biochemical traits in cultivars and wild species of wheat under drought stress. Environmental Stresses in Crop Sciences, 12(3): 685-696. (In Persian).
10. Firoozi, B., O. Sofalian, M. Shokrpour, A. Rasoulzadeh and F. Ahmadpoor. 2012. Assessment of Drought Tolerance Indices and their Relation with ISSR Markers in Bread Wheat (Triticum aestivum L.). Notulae Scientia Biologicae, 4(3): 143-150. [DOI:10.15835/nsb437911]
11. Hashimoto, M. and S. Komatsu. 2007. Proteomic analysis of rice seedling during cold stress. Proteomics, 7: 293-302. [DOI:10.1002/pmic.200600921]
12. Hurkman, W.J. and C.K. Tanaka. 1987. The effect of salt on the pattern of protein synthesis in barley roots. Plant Physiology, 83: 517-524. [DOI:10.1104/pp.83.3.517]
13. Hurkman, W.J., C.K. Tanaka and F.M. Dupont. 1988. The effects of salt stress on polypeptides in membrane fractions from barley roots. Plant Physiology, 88: 1263-1273. [DOI:10.1104/pp.88.4.1263]
14. Ifuku, K., S. Ishihara, R. Shimamoto, K. Ido and F. Sato. 2008. Structure, function, and evolution of the PsbP protein family in higher plants. Photosynthesis Research, 98: 427-437. [DOI:10.1007/s11120-008-9359-1]
15. Kamal, A.H.M., K-H. Kim, K-H. Shin, J-S. Choi, B-K. Baik, H. Tsujimoto, H.Y. Heo, C-S. Park and S-H. Woo. 2010. Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Australian Journal of Crop Science, 4: 196-208.
16. Kausar, R., M. Arshad, A. Shahzad and S. Komatsu. 2013. Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids, 44: 345-359. [DOI:10.1007/s00726-012-1338-3]
17. Komatsu, S. 2006. Plant proteomics databases: Their status in 2005. Current Bioinformatics, 1: 33-36. [DOI:10.2174/157489306775330651]
18. Lepedu, H., A. Toma, S.A. Juri, Z. Katani, V. Cesar and H. Fulgosi. 2009. Photochemistry of PSII in CYP38 Arabidopsis thaliana. Food Technology and Biotechnology, 47(3): 275-280.
19. Macdonald, F.D. and B.B. Buchanan. 1997. The reductive pentose phosphate pathway and its regulation. In: Dennis, D.T., D.H. Turpin, D.D. Lefebvre and D.B. Layzell. (Eds.), Plant Metabolism (2nd ed., pp. 299-313). Essex: Addison Wesley Longman.
20. Morant-Manceau, A., E. Pradier and G. Tremblin. 2004. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species salt stress. Journal of Plant Physiology, 169: 25-33. [DOI:10.1078/0176-1617-00963]
21. Mushtaq, R., S. Katiyar and J. Bennett. 2008. Proteomic analysis of drought stress-responsive proteins in rice endosperm affecting grain quality. Journal of Crop Science and Biotechnology, 11: 227-232.
22. Naghavi, M.R. 2014. .Evaluation of spring wheat cultivars under drought stress and proteome analysis for the most tolerant and sensitive ones. PhD Thesis in Plant Breeding (Biometrical Genetics). Department of Plant Breeding and Biotechnology. Faculty of Agriculture. University of Tabriz, Iran. (In Persian).
23. Ng, J.H. and L.L. Ilag. 2002. Functional proteomics: separating the substance from the hype. Drug Discovery Today, 7: 504-505. [DOI:10.1016/S1359-6446(02)02275-4]
24. Nozu, Y., A. Tsugita and K. Kamijo. 2006. Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics, 6: 3665-3670. [DOI:10.1002/pmic.200600043]
25. Porubleva, L., K. Vander Velden, S. Kothari, D.J. Oliver and P.R. Chitnis. 2001. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 22: 1724-1738. https://doi.org/10.1002/1522-2683(200105)22:9<1724::AID-ELPS1724>3.0.CO;2-2 [DOI:10.1002/1522-2683(200105)22:93.0.CO;2-2]
26. Rampino, P., S. Pataleo, C. Gerardi, G. Mita and C. Perrotta. 2006. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant, Cell and Environment, 29: 2143-2152. [DOI:10.1111/j.1365-3040.2006.01588.x]
27. Santos, C., A. Pereira, S. Pereira and J. Teixeira. 2004. Regulation of glutamine synthetase expression in sunflower cells exposed to salt and osmotic stress. Scientia Horticulturae, 103: 101-111. [DOI:10.1016/j.scienta.2004.04.010]
28. Spreitzer, R.J. and M.E. Salvucci. 2002. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology, 53: 449-475. [DOI:10.1146/annurev.arplant.53.100301.135233]
29. Takahashi, S. and N. Murata. 2008. How do environmental stresses accelerate photo inhibition? Trends Plant Science, 13: 178-182. [DOI:10.1016/j.tplants.2008.01.005]
30. Tamoi, M., M. Nagaoka, Y. Yabuta and S. Shigeoka. 2005. Carbon metabolism in the Calvin cycle. Plant Biotechnology, 22: 355-360. [DOI:10.5511/plantbiotechnology.22.355]
31. van Wijk, K.J. 2001. Challenges and prospects of plant proteomics. Plant Physiology, 126: 501-508. [DOI:10.1104/pp.126.2.501]
32. Wang, W., B. Vinocur, O. Soseyov and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sciences, 9: 244-52. [DOI:10.1016/j.tplants.2004.03.006]
33. Zang, X. and S. Komatsu. 2007. A proteomic approach for identifying osmotic-stress-related proteins in rice. Phytochemical, 68: 426-437. [DOI:10.1016/j.phytochem.2006.11.005]
34. Zivy, M. 1987. Genetic variability for heat shock proteins in common wheat. Theoretical Applied Genetics, 74: 209-213. [DOI:10.1007/BF00289970]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.