1. Aebi, H. (1984). Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121-126). Academic press. [
DOI:10.1016/S0076-6879(84)05016-3]
2. Almomani, F., Alhawatema, M., & Hameed, K. (2013). Detection, identification and morphological characteristic of Macrophomina phaseolina: the charcoal rot disease pathogens isolated from infected plants in Northern Jordan. Archives of Phytopathology and Plant Protection, 46(9), 1005-1014. [
DOI:10.1080/03235408.2012.756174]
3. DOI: 10.1111/j.1365-2672.1994.tb03055.x [
DOI:10.1111/j.1365-2672.1994.tb03055.x]
4. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. DOI: 10.1146/annurev.arplant.55.031903.141701 [
DOI:10.1146/annurev.arplant.55.031903.141701]
5. Bhattacharya, D., Dhar, T. K., Siddiqui, K. A. I., & Ali, E. (1994). Inhibition of seed germination by Macrophomina phaseolina is related to phaseolinone production. Journal of Applied Microbiology, 77(2), 129-133. DOI: 10.1146/annurev.arplant.55.031903.141701 [
DOI:10.1146/annurev.arplant.55.031903.141701]
6. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179-194. DOI: 10.1093/aob/mcf118 [
DOI:10.1093/aob/mcf118]
7. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. [
DOI:10.1016/0003-2697(76)90527-3]
8. DOI: 10.1016/0003-2697(76)90527-3 [
DOI:10.1016/0003-2697(76)90527-3]
9. Castaño-Miquel, L., Mas, A., Teixeira, I., Seguí, J., Perearnau, A., Thampi, B. N., ... & Lois, L. M. (2017). SUMOylation inhibition mediated by disruption of SUMO E1-E2 interactions confers plant susceptibility to necrotrophic fungal pathogens. Molecular Plant, 10(5), 709-720. DOI: 10.1016/j.molp.2017.01.007 [
DOI:10.1016/j.molp.2017.01.007]
10. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35, 1011-1019. DOI: 10.1590/S1415-47572012000600016 [
DOI:10.1590/S1415-47572012000600016]
11. Coser, S. M., Chowda Reddy, R. V., Zhang, J., Mueller, D. S., Mengistu, A., Wise, K. A., ... & Singh, A. K. (2017). Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Frontiers in Plant Science, 8, 1626. DOI: 10.3389/fpls.2017.01626 [
DOI:10.3389/fpls.2017.01626]
12. Dat, J., Vandenabeele, S., Vranova, E. V. M. M., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57, 779-795. DOI: 10.1007/s000180050041 [
DOI:10.1007/s000180050041]
13. Derakhshan, A., Babaeizad, V., Panjekeh, N., & Taheri, A. (2020). Study of biochemical and molecular changes of iranian rice cultivars in interaction with bacterial pathogen Xanthomonas oryzae pv. oryzae causes leaf blight disease. Journal of Crop Breeding, 12(36), 77-89. DOI: 10.52547/jcb.12.36.77 [
DOI:10.52547/jcb.12.36.77]
14. [In Persian]
15. Díaz-Vivancos, P., Rubio, M., Mesonero, V., Periago, P. M., Ros Barceló, A., Martínez-Gómez, P., & Hernández, J. A. (2006). The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. Journal of Experimental Botany, 57(14), 3813-3824. DOI: 10.1093/jxb/erl138 [
DOI:10.1093/jxb/erl138]
16. Fuhlbohm, M. J., Ryley, M. J., & Aitken, E. A. B. (2013). Infection of mungbean seed by Macrophomina phaseolina is more likely to result from localized pod infection than from systemic plant infection. Plant Pathology, 62(6), 1271-1284. DOI: 10.1111/ppa.12047 [
DOI:10.1111/ppa.12047]
17. Gechev, T. S., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences CMLS, 59, 708-714. DOI: 10.1007/s00018-002-8459-x [
DOI:10.1007/s00018-002-8459-x]
18. Ghorbanipour, A., Rabiei, B., Rahmanpour, S., & Khodaparast, S. A. (2023). Evaluation of Soybean Genotypes Yield and Yield Stability Under Charcoal Rot Disease Conditions using GGE Biplot Method. Journal of Crop Breeding. 15(45), 234-242. DOI:10.61186/jcb.15.45.234 [In Persian] [
DOI:10.61186/jcb.15.45.234]
19. Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312-322. DOI: 10.1104/pp.106.077073 [
DOI:10.1104/pp.106.077073]
20. Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., & Steffey, K. L. (Eds.). (2015). Compendium of soybean diseases and pests (pp. 56-59). St. Paul, MN: American Phytopathological Society. DOI: 10.1104/pp.106.077073 [
DOI:10.1104/pp.106.077073]
21. Jardine, D. J., & Pearson, C. A. (1987). Charcoal rot of soybeans. Cooperative Extension Service, Kansas State University.
22. Kanazawa, S., Sano, S., Koshiba, T., & Ushimaru, T. (2000). Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark‐induced senescence. Physiologia Plantarum, 109(2), 211-216. DOI: 10.1034/j.1399-3054.2000.100214.x [
DOI:10.1034/j.1399-3054.2000.100214.x]
23. Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E. M., Aro, E. M., & Rintamäki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 412(2), 275-285. DOI: 10.1042/BJ20080030 [
DOI:10.1042/BJ20080030]
24. Kannojia, P., Choudhary, K. K., Srivastava, A. K., & Singh, A. K. (2019). PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In PGPR Amelioration in Sustainable Agriculture (pp. 67-84). Woodhead Publishing. DOI: 10.1016/B978-0-12-815879-1.00004-5 [
DOI:10.1016/B978-0-12-815879-1.00004-5]
25. Kar, R. K. (2011). Plant responses to water stress: role of reactive oxygen species. Plant Signaling & Behavior, 6(11), 1741-1745. DOI: 10.4161/psb.6.11.17729 [
DOI:10.4161/psb.6.11.17729]
26. Koc, E., & Üstün, A. S. (2012). Influence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turkish Journal of Biology, 36(3), 357-371. DOI: 10.3906/biy-1109-12 [
DOI:10.3906/biy-1109-12]
27. Kumari, N., Sharma, I., Alam, A., & Sharma, V. (2015). Oxidative stress and role of antioxidant machinery in two cultivars of sorghum (Sorghum bicolor L.) to combat the damage induced by Macrophomina phaseolina. European Journal of Biotechnology and Bioscience, 3(4), 5-13.
28. Kumari, R., Shekhawat, K. S., Gupta, R., & Khokhar, M. K. (2012). Integrated management against root-rot of mungbean [Vigna radiata (L.) Wilczek] incited by Macrophomina phaseolina. Journal of Plant Pathology and Microbiology, 3(5), 136. DOI: 10.4172/2157-7471.1000136 [
DOI:10.4172/2157-7471.1000136]
29. Lavania, M., Chauhan, P. S., Chauhan, S. V. S., Singh, H. B., & Nautiyal, C. S. (2006). Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 52, 363-368. DOI: 10.1007/s00284-005-5578-2 [
DOI:10.1007/s00284-005-5578-2]
30. Mengistu, A., Ray, J. D., Smith, J. R., & Paris, R. L. (2007). Charcoal rot disease assessment of soybean genotypes using a colony‐forming unit index. Crop Science, 47(6), 2453-2461. DOI: 10.2135/cropsci2007.04.0186 [
DOI:10.2135/cropsci2007.04.0186]
31. Mufti, R., & Bano, A. (2019). PGPR-induced defense responses in the soybean plant against charcoal rot disease. European Journal of Plant Pathology, 155, 983-1000. DOI: 10.1007/s10658-019-01828-6 [
DOI:10.1007/s10658-019-01828-6]
32. Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24, 255-265. DOI: 10.1007/s00299-005-0972-6 [
DOI:10.1007/s00299-005-0972-6]
33. Pawlowski, M. L., Hill, C. B., & Hartman, G. L. (2015). Resistance to charcoal rot identified in ancestral soybean germplasm. Crop Science, 55(3), 1230-1235. DOI: 10.2135/cropsci2014.10.0687 [
DOI:10.2135/cropsci2014.10.0687]
34. Ramzan, M., Sana, S., Javaid, N., Shah, A. A., Ejaz, S., Malik, W. N., ... & Danish, S. (2021). Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Scientific Reports, 11(1), 9445. DOI: 10.1038/s41598-021-88797-1 [
DOI:10.1038/s41598-021-88797-1]
35. Rayatpanah, S., Forotan, A. and oladi, M. (2002). Assessment of the Susceptibility of Common Soybean Cultivars to Charcoal Rot Disease in Mazandaran Province. the Proceeding of the 15th Iranian Plant Protection Congress, Kermanshah, Iran. [In Persian]
36. Romero Luna, M. P., Mueller, D., Mengistu, A., Singh, A. K., Hartman, G. L., & Wise, K. A. (2017). Advancing our understanding of charcoal rot in soybeans. Journal of Integrated Pest Management, 8(1), 8. DOI: 10.1093/jipm/pmw020 [
DOI:10.1093/jipm/pmw020]
37. Sasaki, K., Iwai, T., Hiraga, S., Kuroda, K., Seo, S., Mitsuhara, I., ... & Ohashi, Y. (2004). Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant and Cell Physiology, 45(10), 1442-1452. DOI: 10.1093/pcp/pch165 [
DOI:10.1093/pcp/pch165]
38. Sinclair, J. B., & Backman, P. A. (1989). Compendium of soybean diseases. The American Phytopathological Society, 30-33.
39. Su, Y., Guo, J., Ling, H., Chen, S., Wang, S., Xu, L., ... & Que, Y. (2014). Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One, 9(1), e84426. DOI: 10.1371/journal.pone.0084426 [
DOI:10.1371/journal.pone.0084426]
40. Tang, W., & Newton, R. J. (2005). Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiology and Biochemistry, 43(8), 760-769. DOI: 10.1016/j.plaphy.2005.05.008 [
DOI:10.1016/j.plaphy.2005.05.008]
41. Thakker, J. N., Patel, S., & Dhandhukia, P. C. (2013). Induction of defense‐related enzymes in banana plants: effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. Cubense. International Scholarly Research Notices, 2013(1), 601303. DOI: 10.5402/2013/601303 [
DOI:10.5402/2013/601303]
42. Van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753-765. DOI: 10.1023/A:1008638109140 [
DOI:10.1023/A:1008638109140]
43. Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 2013(1), 963248. DOI: 10.1155/2013/963248 [
DOI:10.1155/2013/963248]
44. Vera, P., Tornero, P., & Conejero, V. (1993). Cloning and expression analysis of a viroid-induced peroxidase from tomato plants. Molecular Plant-Microbe Interactions: MPMI, 6(6), 790-794.
45. Wan, R., Hou, X., Wang, X., Qu, J., Singer, S. D., Wang, Y., & Wang, X. (2015). Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Frontiers in Plant Science, 6, 854. DOI: 10.3389/fpls.2015.00854 [
DOI:10.3389/fpls.2015.00854]
46. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., ... & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 16(16), 4806-4816. DOI: 10.1093/emboj/16.16.4806 [
DOI:10.1093/emboj/16.16.4806]
47. Yoshimura, K., Yabuta, Y., Ishikawa, T., & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 123(1), 223-234. DOI: 10.1104/pp.123.1.223 [
DOI:10.1104/pp.123.1.223]
48. Zeffa, D. M., Fantin, L. H., Koltun, A., de Oliveira, A. L., Nunes, M. P., Canteri, M. G., & Gonçalves, L. S. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ Journals, 8, e7905. DOI: 110.7717/peerj.7905 [
DOI:10.7717/peerj.7905]
49. Aebi, H. (1984). Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121-126). Academic press. [
DOI:10.1016/S0076-6879(84)05016-3]
50. Almomani, F., Alhawatema, M., & Hameed, K. (2013). Detection, identification and morphological characteristic of Macrophomina phaseolina: the charcoal rot disease pathogens isolated from infected plants in Northern Jordan. Archives of Phytopathology and Plant Protection, 46(9), 1005-1014. [
DOI:10.1080/03235408.2012.756174]
51. DOI: 10.1111/j.1365-2672.1994.tb03055.x [
DOI:10.1111/j.1365-2672.1994.tb03055.x]
52. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. DOI: 10.1146/annurev.arplant.55.031903.141701 [
DOI:10.1146/annurev.arplant.55.031903.141701]
53. Bhattacharya, D., Dhar, T. K., Siddiqui, K. A. I., & Ali, E. (1994). Inhibition of seed germination by Macrophomina phaseolina is related to phaseolinone production. Journal of Applied Microbiology, 77(2), 129-133. DOI: 10.1146/annurev.arplant.55.031903.141701 [
DOI:10.1146/annurev.arplant.55.031903.141701]
54. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2), 179-194. DOI: 10.1093/aob/mcf118 [
DOI:10.1093/aob/mcf118]
55. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. [
DOI:10.1016/0003-2697(76)90527-3]
56. DOI: 10.1016/0003-2697(76)90527-3 [
DOI:10.1016/0003-2697(76)90527-3]
57. Castaño-Miquel, L., Mas, A., Teixeira, I., Seguí, J., Perearnau, A., Thampi, B. N., ... & Lois, L. M. (2017). SUMOylation inhibition mediated by disruption of SUMO E1-E2 interactions confers plant susceptibility to necrotrophic fungal pathogens. Molecular Plant, 10(5), 709-720. DOI: 10.1016/j.molp.2017.01.007 [
DOI:10.1016/j.molp.2017.01.007]
58. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35, 1011-1019. DOI: 10.1590/S1415-47572012000600016 [
DOI:10.1590/S1415-47572012000600016]
59. Coser, S. M., Chowda Reddy, R. V., Zhang, J., Mueller, D. S., Mengistu, A., Wise, K. A., ... & Singh, A. K. (2017). Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Frontiers in Plant Science, 8, 1626. DOI: 10.3389/fpls.2017.01626 [
DOI:10.3389/fpls.2017.01626]
60. Dat, J., Vandenabeele, S., Vranova, E. V. M. M., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57, 779-795. DOI: 10.1007/s000180050041 [
DOI:10.1007/s000180050041]
61. Derakhshan, A., Babaeizad, V., Panjekeh, N., & Taheri, A. (2020). Study of biochemical and molecular changes of iranian rice cultivars in interaction with bacterial pathogen Xanthomonas oryzae pv. oryzae causes leaf blight disease. Journal of Crop Breeding, 12(36), 77-89. DOI: 10.52547/jcb.12.36.77 [
DOI:10.52547/jcb.12.36.77]
62. [In Persian]
63. Díaz-Vivancos, P., Rubio, M., Mesonero, V., Periago, P. M., Ros Barceló, A., Martínez-Gómez, P., & Hernández, J. A. (2006). The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. Journal of Experimental Botany, 57(14), 3813-3824. DOI: 10.1093/jxb/erl138 [
DOI:10.1093/jxb/erl138]
64. Fuhlbohm, M. J., Ryley, M. J., & Aitken, E. A. B. (2013). Infection of mungbean seed by Macrophomina phaseolina is more likely to result from localized pod infection than from systemic plant infection. Plant Pathology, 62(6), 1271-1284. DOI: 10.1111/ppa.12047 [
DOI:10.1111/ppa.12047]
65. Gechev, T. S., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences CMLS, 59, 708-714. DOI: 10.1007/s00018-002-8459-x [
DOI:10.1007/s00018-002-8459-x]
66. Ghorbanipour, A., Rabiei, B., Rahmanpour, S., & Khodaparast, S. A. (2023). Evaluation of Soybean Genotypes Yield and Yield Stability Under Charcoal Rot Disease Conditions using GGE Biplot Method. Journal of Crop Breeding. 15(45), 234-242. DOI:10.61186/jcb.15.45.234 [In Persian] [
DOI:10.61186/jcb.15.45.234]
67. Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312-322. DOI: 10.1104/pp.106.077073 [
DOI:10.1104/pp.106.077073]
68. Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., & Steffey, K. L. (Eds.). (2015). Compendium of soybean diseases and pests (pp. 56-59). St. Paul, MN: American Phytopathological Society. DOI: 10.1104/pp.106.077073 [
DOI:10.1104/pp.106.077073]
69. Jardine, D. J., & Pearson, C. A. (1987). Charcoal rot of soybeans. Cooperative Extension Service, Kansas State University.
70. Kanazawa, S., Sano, S., Koshiba, T., & Ushimaru, T. (2000). Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark‐induced senescence. Physiologia Plantarum, 109(2), 211-216. DOI: 10.1034/j.1399-3054.2000.100214.x [
DOI:10.1034/j.1399-3054.2000.100214.x]
71. Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E. M., Aro, E. M., & Rintamäki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 412(2), 275-285. DOI: 10.1042/BJ20080030 [
DOI:10.1042/BJ20080030]
72. Kannojia, P., Choudhary, K. K., Srivastava, A. K., & Singh, A. K. (2019). PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In PGPR Amelioration in Sustainable Agriculture (pp. 67-84). Woodhead Publishing. DOI: 10.1016/B978-0-12-815879-1.00004-5 [
DOI:10.1016/B978-0-12-815879-1.00004-5]
73. Kar, R. K. (2011). Plant responses to water stress: role of reactive oxygen species. Plant Signaling & Behavior, 6(11), 1741-1745. DOI: 10.4161/psb.6.11.17729 [
DOI:10.4161/psb.6.11.17729]
74. Koc, E., & Üstün, A. S. (2012). Influence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turkish Journal of Biology, 36(3), 357-371. DOI: 10.3906/biy-1109-12 [
DOI:10.3906/biy-1109-12]
75. Kumari, N., Sharma, I., Alam, A., & Sharma, V. (2015). Oxidative stress and role of antioxidant machinery in two cultivars of sorghum (Sorghum bicolor L.) to combat the damage induced by Macrophomina phaseolina. European Journal of Biotechnology and Bioscience, 3(4), 5-13.
76. Kumari, R., Shekhawat, K. S., Gupta, R., & Khokhar, M. K. (2012). Integrated management against root-rot of mungbean [Vigna radiata (L.) Wilczek] incited by Macrophomina phaseolina. Journal of Plant Pathology and Microbiology, 3(5), 136. DOI: 10.4172/2157-7471.1000136 [
DOI:10.4172/2157-7471.1000136]
77. Lavania, M., Chauhan, P. S., Chauhan, S. V. S., Singh, H. B., & Nautiyal, C. S. (2006). Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 52, 363-368. DOI: 10.1007/s00284-005-5578-2 [
DOI:10.1007/s00284-005-5578-2]
78. Mengistu, A., Ray, J. D., Smith, J. R., & Paris, R. L. (2007). Charcoal rot disease assessment of soybean genotypes using a colony‐forming unit index. Crop Science, 47(6), 2453-2461. DOI: 10.2135/cropsci2007.04.0186 [
DOI:10.2135/cropsci2007.04.0186]
79. Mufti, R., & Bano, A. (2019). PGPR-induced defense responses in the soybean plant against charcoal rot disease. European Journal of Plant Pathology, 155, 983-1000. DOI: 10.1007/s10658-019-01828-6 [
DOI:10.1007/s10658-019-01828-6]
80. Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24, 255-265. DOI: 10.1007/s00299-005-0972-6 [
DOI:10.1007/s00299-005-0972-6]
81. Pawlowski, M. L., Hill, C. B., & Hartman, G. L. (2015). Resistance to charcoal rot identified in ancestral soybean germplasm. Crop Science, 55(3), 1230-1235. DOI: 10.2135/cropsci2014.10.0687 [
DOI:10.2135/cropsci2014.10.0687]
82. Ramzan, M., Sana, S., Javaid, N., Shah, A. A., Ejaz, S., Malik, W. N., ... & Danish, S. (2021). Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Scientific Reports, 11(1), 9445. DOI: 10.1038/s41598-021-88797-1 [
DOI:10.1038/s41598-021-88797-1]
83. Rayatpanah, S., Forotan, A. and oladi, M. (2002). Assessment of the Susceptibility of Common Soybean Cultivars to Charcoal Rot Disease in Mazandaran Province. the Proceeding of the 15th Iranian Plant Protection Congress, Kermanshah, Iran. [In Persian]
84. Romero Luna, M. P., Mueller, D., Mengistu, A., Singh, A. K., Hartman, G. L., & Wise, K. A. (2017). Advancing our understanding of charcoal rot in soybeans. Journal of Integrated Pest Management, 8(1), 8. DOI: 10.1093/jipm/pmw020 [
DOI:10.1093/jipm/pmw020]
85. Sasaki, K., Iwai, T., Hiraga, S., Kuroda, K., Seo, S., Mitsuhara, I., ... & Ohashi, Y. (2004). Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant and Cell Physiology, 45(10), 1442-1452. DOI: 10.1093/pcp/pch165 [
DOI:10.1093/pcp/pch165]
86. Sinclair, J. B., & Backman, P. A. (1989). Compendium of soybean diseases. The American Phytopathological Society, 30-33.
87. Su, Y., Guo, J., Ling, H., Chen, S., Wang, S., Xu, L., ... & Que, Y. (2014). Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One, 9(1), e84426. DOI: 10.1371/journal.pone.0084426 [
DOI:10.1371/journal.pone.0084426]
88. Tang, W., & Newton, R. J. (2005). Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiology and Biochemistry, 43(8), 760-769. DOI: 10.1016/j.plaphy.2005.05.008 [
DOI:10.1016/j.plaphy.2005.05.008]
89. Thakker, J. N., Patel, S., & Dhandhukia, P. C. (2013). Induction of defense‐related enzymes in banana plants: effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. Cubense. International Scholarly Research Notices, 2013(1), 601303. DOI: 10.5402/2013/601303 [
DOI:10.5402/2013/601303]
90. Van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753-765. DOI: 10.1023/A:1008638109140 [
DOI:10.1023/A:1008638109140]
91. Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 2013(1), 963248. DOI: 10.1155/2013/963248 [
DOI:10.1155/2013/963248]
92. Vera, P., Tornero, P., & Conejero, V. (1993). Cloning and expression analysis of a viroid-induced peroxidase from tomato plants. Molecular Plant-Microbe Interactions: MPMI, 6(6), 790-794.
93. Wan, R., Hou, X., Wang, X., Qu, J., Singer, S. D., Wang, Y., & Wang, X. (2015). Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Frontiers in Plant Science, 6, 854. DOI: 10.3389/fpls.2015.00854 [
DOI:10.3389/fpls.2015.00854]
94. Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., ... & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 16(16), 4806-4816. DOI: 10.1093/emboj/16.16.4806 [
DOI:10.1093/emboj/16.16.4806]
95. Yoshimura, K., Yabuta, Y., Ishikawa, T., & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 123(1), 223-234. DOI: 10.1104/pp.123.1.223 [
DOI:10.1104/pp.123.1.223]
96. Zeffa, D. M., Fantin, L. H., Koltun, A., de Oliveira, A. L., Nunes, M. P., Canteri, M. G., & Gonçalves, L. S. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ Journals, 8, e7905. DOI: 110.7717/peerj.7905 [
DOI:10.7717/peerj.7905]