1. Abdi, R., & Jabbarzadeh, Z. (2022). Investigation of some growth and biochemical and post-harvest characteristics of Rosa hybrida cv. Avalanche cut flower using combined application of sodium nitroprusside and putrescine. Plant Process and Function, 11(50), 37-56. [In Persian]
2. Akbari, A., Khademi, O., Sharafi, Y., & Tabatabaei, S. J. (2017). Effects of Putrescine treatment on strawberry fruit cv. 'Camarosa' under NaCl salinity stress. Journal of Crops Improvement, 19(1), 147-161. [In Persian] [
DOI:10.22059/jci.2017.60405]
3. Akhavan hezaveh, T. (2023). The effect of UV stress and titanium dioxide nanoparticles foliar spraying on some physiological and biochemical aspects of sage (Salvia officinalis L.). Ecophysiology and Phytochemistry of Medicinal and Aromatic Plants, 9(2), 1-15. [In Persian]
4. Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., & Tiburcio, A. F. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231(6), 1237-1249. [
DOI:10.1007/s00425-010-1130-0]
5. Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F., & Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28(23), 1867-1876. [
DOI:10.1007/s10529-006-9179-3]
6. Alizadeh, B., Ghahremani, Z., Barzegar, T., & Nikbakht, J. (2017). Effect of foliar application of putrescine on growth, yield and fruit quality of sweet pepper (Capsicuum annum cv. Dimaz) under water stress. Journal of Crops Improvement, 19(2), 431-444. [In Persian] [
DOI:10.22059/jci.2017.60425]
7. Ansari, A., Andalibi, B., Zarei, M., & Shekari, F. (2021). Effect of putrescine foliar application on growth and tolerance of iberica dragon's head (Lallemantia iberica) to lead stress. Environmental Stresses in Crop Sciences, 14(3), 861-871. [
DOI:10.22077/escs.2020.3018.1779 [In Persian]]
8. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. [
DOI:10.1104/pp.24.1.1]
9. Baniasadi, F., Saffari, V. R., & Maghsoudi moud, A. A. (2015). Effect of putrescine on some physiological and morphological characteristics of pot marigold (Calendula officinalis L.) under salinity stress. Environmental Stresses in Crop Sciences, 8(1), 73-82. [
DOI:10.22077/escs.2015.202 [In Persian]]
10. Cacmak, I., & Horst, W. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip soybean. Plant Physiology, 83, 463-468. [
DOI:10.1111/j.1399-3054.1991.tb00121.x]
11. Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. [
DOI:10.38212/2224-6614.2748]
12. Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science, 9, 1945. [
DOI:10.3389/fpls.2018.01945]
13. Faraji-mehmany, A., Esmaielpour, B., Sefidkon, F., & Khorramdel, S. (2016). Effects of foliar spraying with salicylic acid and putrescine on growth characteristics and yield of summer savory (Satureja hortensis L.). Field Crops Research, 14(1), 73-85. [
DOI:10.22067/gsc.v14i1.33631 [In Persian]]
14. Farooq, M., Wahid, A., & Lee, D. J. (2009). Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum, 31(5), 937-945. [
DOI:10.1007/s11738-009-0307-2]
15. Farsari, S., Mehdizadeh, L., Moghaddam, L., & Ebrahimi, H. (2019). Effect of foliar application of putrescine on biomass, water relative content and mineral elements of sweet basil (Ocimum basilicum L. cv. Genove) under salinity stress. Plant Process and Function, 8(33), 399-411. [In Persian]
16. Gerami, M., Mohammadian, A., & Akbarpour, V. (2019). The effect of putrescine and salicylic acid on physiological characteristics and antioxidant in Stevia rebaudiana B. under salinity stress. Crop Breeding, 11(29), 40-54.
https://doi.org/10.29252/jcb.11.29.40 [
DOI:10.29252/jcb.11.29.40 [In Persian]]
17. Ghasemi, Z., Karimian, A. A., Azimzadeh, H., & Sodaeizadeh, H. (2018). Effect of irrigation with wastewater on some physiological and morphological characteristics of Rosmarinus officinalis (Case Study: Yazd City Wastewater). Water and Wastewater Science and Engineering, 3(3), 29-38. [
DOI:10.22112/jwwse.2018.130237.1088 [In Persian]]
18. Gholami, A., Abbaspour, H., Gerami, M., & Hashemi-Moghaddam, H. (2020). Investigation of effect of titanium dioxide nanoparticles (TiO2) on photosynthetic pigments and some biochemical and antioxidant properties of the Rosmarinus officinalis L. Food Science and Technology, 17(105), 123-134.
https://doi.org/10.52547/fsct.17.105.123 [
DOI:10.52547/fsct.17.105.123 [In Persian]]
19. Gholipour, S., Zamani, G. R., & JamialAhmadi, M. (2020). Effect of putrescine and calcium nitrate foliar application on some physiological traits of sesame (Sesamum indicum L.) under different contents. Plant Process and Function, 9(36), 439-451. http://jispp.iut.ac.ir/article-1-1310-en.html [In Persian]
20. Gupta, S. M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657. [
DOI:10.1007/s11434-011-4476-1]
21. Hajiboland, R., & Ebrahimi, N. (2011). Growth, photosynthesis and phenolics metabolism in tobacco plants under salinity and application of polyamines. Journal of Plant Biological Sciences, 3(8), 13-26. https://ijpb.ui.ac.ir/article_18810.html [In Persian]
22. Hatami, M., Kariman, K., & Ghorbanpour, M. (2016). Engineered nanomaterial -mediated changes in the metabolism of terrestrial plants. Science of the Total Environment, 571, 275-291. [
DOI:10.1016/j.scitotenv.2016.07.184]
23. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105(1-3), 269-279.
https://doi.org/10.1385/BTER:105:1-3:269 [
DOI:10.1385/bter:105:1-3:269]
24. Jafarpour, F., Bakhshi, D., Ghasemnejad, M., & Hassan Sajedi, R. (2014). Effect of putrescine on postharvest quality, and phenolic compounds and antioxidant capacity of broccoli (Brassica oleracea L. cv. Italica) florets. Journal of Horticultural Science, 28(3), 303-311. [
DOI:10.22067/jhorts4.v0i0.42741 [In Persian]]
25. Kiss, F., Deak, G., Feher, M., Balough, A., Szabolcsi, L., & Pais, I. (1985). The effect of titanium and gallium in photosynthetic rate of algae. Journal of Plant Nutrition, 8, 825-832. [
DOI:10.1080/01904168509363387]
26. Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16), 3053-3061.
https://doi.org/10.1016/j.scitotenv.2010.03.031 [
DOI:https://doi.org/10.1016/j.scitotenv.2010.03.031]
27. Mahdi Nezhad, N., Mousavi, H., Fakheri, B., & Heidari, F. (2019). The assesment of the effects of the nanoparticles on some physiological traits changes, photosynthetic pigments and the prthenolide of chamomile plant (Tanacetum parthenium) under water dificit stress. Plant Process and Function, 8(29), 219-227. http://jispp.iut.ac.ir/article-1-603-en.html [In Persian]
28. Mahros, K. M., Badawy, E. M., Mahgoub, M. H., Habib, A. M., & El-Sayed, I. M. (2011). putrescine and uniconazole treatments on flower characters and photosynthetic pigments of (Chrysanthemum indicum L.) plant. Journal of South American Earth Sciences, 7, 399-408.
29. Mandeh, M., Omidi, M., & Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 150(1), 376-380. [
DOI:10.1007/s12011-012-9480-z]
30. Mazarie, A., Mousavi-nik, S. M., Ghanbari, A., & Fahmideh, L. (2019). Effect of different spraying concentrations of jasmonic acid and titanium dioxide nanoparticles on some physiological traits and antioxidant system activity of Sage (Salvia officinalis L). Journal of Plant Biological Sciences, 11(1), 1-22. [
DOI:10.22108/ijpb.2018.110510.1092 [In Persian]]
31. Miliauskas, G., Venskutonis, P. R., & van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231-237. [
DOI:10.1016/j.foodchem.2003.05.007]
32. Mohseni Mohammadjanlou, A., Seyedsharifi, R., & Khomari, S. (2021). Effects of holding irrigation at reproductive stages and putrescine and bio fertilizers application on grain filling period, chlorophyll content and yield of wheat (Triticum aestivum L.). Iranian Journal of Field Crops Research, 19(2), 153-167. [
DOI:10.22067/jcesc.2021.67402.1000 [In Persian]]
33. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154-163. [
DOI:10.1016/j.plantsci.2010.04.012]
34. Nasri, S. (2012). A review of the antinociceptive use of medicinal plants in Iran. Journal of Islamic and Iranian Traditional Medicine, 3(3), 293-310. http://jiitm.ir/article-1-153-en.html [In Persian]
35. Nouri, H., Soltanieh, M., & Moaveni, P. (2017). Study of nano particle TiO2 spraying on chlorophyll, yield and yield components of lentil (Lens culinaris Medik). Iranian Journal Pulses Research, 8(2), 57-68. [In Persian] [
DOI:10.22067/ijpr.v8i2.25752]
36. Oloumi, H., Soltaninejad, R., & Baghizadeh, A. (2015). The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Indian Journal of Plant Physiology, 20(2), 157-161.
https://doi.org/10.1007/s40502-015-0143-x [
DOI:10.1007/s40502-015-0143-x [In Persian]]
37. Paryan, S., Ghorbanpour, M., & Hadian, J. (2020). Influence of CeO2-Nanoparticles on morpho-physiological tritas and tanshinone contents of roots in Salvia miltiorrihiza Bunge upon foliar and soil application methods. Journal of Medicinal Plants, 19(75), 168-187.
https://doi.org/10.29252/jmp.19.75.168 [
DOI:10.29252/jmp.19.75.168 [In Persian]]
38. Rasouli, F., Abedini, F., & Zahedi, S. M. (2016). The effect of Titanium nano dioxide on physiological particular and chlorophyll fluorescence parameters in Eggplant (Solanum melongena L.) under water deficit stress. Journal of Vegetables Sciences, 2(2), 37-51. [
DOI:10.22034/iuvs.2016.32796]
39. [In Persian]
40. Rezaiean, N., Gerami, M., Majidian, P., & Ghorbani, H. (2023). Evaluation of pigments content and functional traits of camelina (Camelina sativa) under the influence of growth stimulants. Plant Production, 13(1), 1-14. [In Persian]
41. Saber, A. T., Mortensen, A., Szarek, J., Jacobsen, N. R., Levin, M., Koponen, I. K., Jensen, K. A., Vogel, U., & Wallin, H. (2019). Toxicity of pristine and paint-embedded TiO(2) nanomaterials. Human & Experimental Toxicology, 38(1), 11-24. [
DOI:10.1177/0960327118774910]
42. Sairam, R. K., & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184, 55-61. [
DOI:10.1046/j.1439-037x.2000.00358.x]
43. Salehi Sardoei, A. (2021). Rosemary: a review of botany, phytochemicals, bioactivities and industrial applications. Plant and Biotechnology, 16(3), 13-26. [In Persian]
44. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology, 299, 152-178. Academic Press. [
DOI:10.1016/S0076-6879(99)99017-1]
45. Talebi, F., Akbarpour, V., & Chalavi, V. (2022). Effect of methanol and titanium dioxide nanoparticles on phytochemical properties of artichoke (Cynara scolymus L.). Journal of Crop Breeding, 14(43), 84-94.
https://doi.org/10.52547/jcb.14.43.84 [
DOI:10.52547/jcb.14.43.84 [In Persian]]
46. Tang, W., & Newton, R. J. (2005). Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 46(1), 31-43. [
DOI:10.1007/s10725-005-6395-0]
47. Thygesen, L., Thulin, J., Mortensen, A., Skibsted, L. H., & Molgaard, P. (2007). Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chemistry, 101(1), 74-81. [
DOI:10.1016/j.foodchem.2005.11.048]
48. Toumi, I., Moschou, P. N., Paschalidis, K. A., Bouamama, B., Ben Salem-fnayou, A., Ghorbel, A. W., Mliki, A., & Roubelakis-Angelakis, K. A. (2010). Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. Journal of Plant Physiology, 167(7), 519-525. [
DOI:10.1016/j.jplph.2009.10.022]
49. Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2), 179-190.
https://doi.org/10.1385/BTER:110:2:179 [
DOI:10.1385/bter:110:2:179]
50. Ze, Y., Liu, C., Wang, L., Hong, M., & Hong, F. (2011). The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biological Trace Element Research, 143(2), 1131-1141. [
DOI:10.1007/s12011-010-8901-0]