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Extended Abstract

Background: The expression of genes changes under the influence of different developmental
stages and various environmental factors. Drought stress at the flowering and seed-filling stage,
which is known as end-of-season drought stress, can lead to a sharp decrease in yield or complete
failure of crop production. Genetic analysis of drought resistance in the reproductive stage is
necessary to understand the mechanism of plant response to drought conditions in the face of the
challenges of maintaining food security. Assessment of the transcript profile of genes in different
tissues and developmental stages under different conditions of environmental stress can provide
insight into the molecular mechanisms and plants’ reactions to stress. Barley is known as a model
plant for deciphering the mechanisms of drought tolerance, and the study of molecular
mechanisms of barley is important for breeding crops because it can tolerate water limitations at
the flowering and grain-filling stages. This research aimed to identify differentially expressed
genes in barley under end-of-season drought stress using the RNA-Seq technique. Based on the
study of Amini et al. on 13 genotypes of spring two-row barley under drought stress, the
Dayton/Ranney genotype (modified by ICARDA) was identified as a drought-tolerant genotype.
Thus, they were used in this study to investigate the gene expression profile of barley under end-
of-season drought stress.

Methods: The Dayton/Ranney spring barley genotype was subjected to drought stress treatment
(70% available water depletion) at the stage of flag leaf emergence. Total RNA was extracted
from the leaves of the control and drought-treated plants, followed by qualifying the extracted
RNA. After sequencing and analyzing, the expression profiles of differentially expressed genes
were obtained under end-of-season drought stress. Moreover, the differentially expressed genes
were functionally investigated using gene ontology enrichment analysis. The binding site of
transcription factors in the promoter sequence of differentially expressed genes was identified
using PlantPAN 3.0 online software, and the frequency of binding sites was reported as a
percentage of all identified sites.

Results: Under end-of-season drought stress, 2920 and 2290 genes showed significant increases
and decreases in expression, respectively, in barley plants. The identified genes were involved in
the processes of photosynthesis, carbohydrate and lipid metabolism, regulatory processes,
response to abiotic stimuli and stress, seed development, and maturation. Based on gene ontology
analysis, these genes were involved in the metabolic and biosynthetic processes of carboxylic
acid, sucrose, and glucan cellular metabolism, proteolysis, phosphorylation, RNA metabolism
and biosynthesis, and serine family amino acid metabolism. Among the genes with the highest
increase in expression under drought stress are the family of abundant proteins in late
embryogenesis, a phenylpropanoid pathway gene called anthranilate N-benzoyltransferase
protein 1, the xyloglucan-endotrans-glucosylate/hydrolase gene, protein serine/threonine-
phosphatase, a mitochondrial arginine transporter, an endonuclease gene, laccase enzyme, and
several transcription factors. Besides, the genes that showed the most significant decrease in
expression under drought stress include an L-type lectin-containing receptor kinase (Hv-LecRK),
a ribonuclease Il1-like gene, the HEC1-like transcription factor, methyljasmonate Il -inducible
lipoxygenase, glucan endo-1,3-beta-glucosidase Glll, PIP2;5 aquaporin, 70-kDa heat
shock protein (HSP70), and an aspartic proteinase nepenthesin-1 gene. Moreover, two unknown
genes 2HG0195510 and 4HG0389440 showed significant increases in expression. These genes
are involved in the metabolic and biosynthetic processes of carboxylic acid, response to abiotic
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stimuli and stress, response to endogenous stimuli, proteolysis, phosphorylation, RNA
metabolism and biosynthesis, the protein metabolic process, and serine family amino acid
metabolism and transport. At the level of molecular function, the groups of catalytic activity and
connection assigned the largest number of genes to themselves for all the genes with differential
expression. Other molecular functions identified for genes responsive to drought stress include
protein binding, nucleotide binding, transport activity, DNA binding, transferase, kinase,
hydrolase, and pyrophosphatase activity. In addition, these increased genes expressed specifically
had the functions of message transmission, transcription factor, enzyme regulation, molecular
transport, and receptor activities. The binding positions of transcription factors in genes with
differential expression were classified into 64 families. The highest percentage of binding sites in
the up-expressed genes belongs to ERF/AP2 transcription factors, followed by the most abundant
binding sites belonging to the transcription factor family of bZIP, bHLH, DOF, and GATA.
Furthermore, the most abundant binding sites in the down-expressed genes included AP2/ERF,
BESL, EIL, TCP, Myb/SANT, GATA, and DOF.

Conclusion: By evaluating the gene expression under end-of-season drought stress, aspects of
the resistance mechanism of barley to drought stress were identified that are related to the
metabolic and biosynthetic activities of the plant in the reproductive stage. The results show that
diverse and complex gene networks play a role in the response of the barley plant to end-of-season
drought stress, which mainly decreased the biological processes related to photosynthesis and the
production of precursor metabolites and increased the metabolic processes. Additionally, the
response process to the stimulus was observed in both sets of increased and decreased expressed
genes.

Keywords: Drought Resistance Mechanisms, Gene Expression Profile, Gene ontology,
RNA-Seq analysis
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Figure 1. Transcription factor binding sites in genes indentified under termainal drought stress
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Figure 3. Ontologies of differentially expressed genes under terminal drought stress based on biological processes
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