دوره 16، شماره 3 - ( پاییز 1403 )                   جلد 16 شماره 3 صفحات 63-52 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Rezaei Musa Dargh S, Abdollahi Mandoulakani B, Ghasemzadeh R. (2024). The Effect of Iron Deficiency Stress on the Relative Expression of ZIP3, ZIP6, and ZIP7 Genes in Bread Wheat (Triticum aestivum L.) Cultivars. J Crop Breed. 16(3), 52-63. doi:10.61186/jcb.16.3.52
URL: http://jcb.sanru.ac.ir/article-1-1519-fa.html
رضایی موسی درق سعید، عبدالهی مندولکانی بابک، قاسم زاده راحله. تاثیر تنش کمبود آهن بر بیان نسبی ژن ‎های ZIP3، ZIP6 و ZIP7 در گندم نان (.Triticum aestivum L) پژوهشنامه اصلاح گیاهان زراعی 1403; 16 (3) :63-52 10.61186/jcb.16.3.52

URL: http://jcb.sanru.ac.ir/article-1-1519-fa.html


1- گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده:   (282 مشاهده)
چکیده مبسوط
مقدمه و هدف: گندم نان (L.Triticum aestivum ) گسترده‌ترین گونه‌ی گندم و یکی از چهار محصول عمده در جهان است که غذای اصلی بیش از 30 درصد مردم جهان را تشکیل می‏دهد. تنش‌های غیرزیستی مهم‌ترین عوامل محیطی محدودکننده تولید محصول و کاهش عملکرد می ‏باشند که با تأثیر روی فرآیندهای مورفولوژیکی، فیزیولوژیکی، بیوشیمیایی و مولکولی نقش قابل‌توجهی در تعیین پتانسیل عملکرد و تولید گیاهان دارند. از تنش‌های غیرزیستی می‌توان به کمبود عناصر کممصرف در خاک اشاره کرد. عناصر کم‌مصرف متابولیسم مواد‌غذایی در بدن انسان را تنظیم می‌کنند و کمبودشان سلامت انسان را بهخطر می‏ اندازد. آهن و روی از جمله عناصر کم مصرف ضروری برای سلامت انسان هستند و بهعنوان عوامل کمکی بسیاری از آنزیم‏ های حیاتی، در بسیاری از فرآیندهای متابولیک انسان نقش دارند. در گیاهان نیز عنصر آهن بیشترین عنصر موردنیاز در بین تمام عناصر کم‌مصرف می‌باشد. آهن بخشی از گروه کاتالیزوری بسیاری از آنزیم‌های اکسیداسیون و احیا بوده و برای سنتز کلروفیل موردنیاز می‌باشد. برای تسهیل در جذب کافی آهن و برای جلوگیری از جذب بیش از حد، گیاهان یک شبکه متعادلی برای تنظیم جذب، استفاده و ذخیره یون‌ها ایجاد کرده‌اند. در واقع چنین تنظیماتی به ژن‌هایی بستگی دارد که هموستازی یون‌ها را در گیاهان تنظیم می‌کنند. در گندم بهدلیل وجود ژنوم بزرگ آلو‏هگزاپلوئید و چالش‌های فنی در ترانسفورماسیون، تعداد کمی از ژن‌های دخیل در جذب، جابجایی و ذخیره‌سازی آهن و روی از نظر عملکردی مشخص شده‌اند. با توجه به نقش مهم پروتئین‌های ZIP در کارایی ارقام نسبت به جذب آهن، مطالعه بیان ژن‌های مذکور در ارقام گندم نان آهن‏-کارا و آهن‏-ناکارا می‌تواند در اصلاح ارقام آهن-‏کارا در این محصول مؤثر باشد. بنابراین هدف از این تحقیق، مطالعه بیان ژن‌های ZIP3، ZIP6 و ZIP7 در برگ و ریشه دو رقم گندم نان آهن‏-کارا و آهن-ناکارا در مراحل مختلف رشدی تحت تنش کمبود آهن بود.
مواد و روشها: این تحقیق بهصورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه ارومیه اجرا شد. فاکتور اول شامل دو رقم گندم آهن‏-کارا (پیشتاز) و آهن‏-ناکارا (فلات)، فاکتور دوم شامل دو سطح آهن خاک (کمبود و کفایت آهن بهترتیب 1/4 و 10 میلی‌گرم در کیلوگرم خاک) و فاکتور سوم شامل دو مرحله نمونهبرداری (رویشی و زایشی بهترتیب یک ماه بعد از کشت و ۳۰ درصد خوشهدهی) بود. برای ارزیابی بیان ژن‌ها، نمونه‌برداری در هر مرحله رشدی از ریشه و برگ گیاهان انجام شد. بذور از مؤسسه تحقیقات اصلاح و تهیه نهال و بذر ایران تهیه و بعد از ضدعفونی با آب اکسیژنه یک درصد، در عمق ۴ سانتیمتری خاک کاشته شد. آبیاری در طول فصل رشد، با استفاده از آب مقطر در حد ظرفیت زراعی انجام شد.
یافتهها: نتایج تجزیه واریانس بیان نسبی هر سه ژن مورد مطالعه نشان داد که اثر متقابل رقم × اندام × مرحله نمونهبرداری در سطح احتمال یک درصد معنی‏ دار می‏ باشد. براساس نتایج مقایسه میانگین برهمکنش رقم × اندام × مرحله نمونهبرداری برای ژن ZIP3 بیشترین افزایش بیان نسبی ژن در ریشه رقم آهن‏-کارای پیشتاز در مرحله رویشی مشاهده شد و در مرحله زایشی میزان بیان نسبی این ژن در ریشه رقم آهن-‏ناکارای فلات بیشتر از رقم آهن-کارای پیشتاز بود. ولی در برگ، رقم آهن- ناکارای فلات بیشترین افزایش بیان نسبی در هر دو مرحله زایشی و رویشی را بهخود اختصاص داد ولی اختلاف میزان بیان ژن در برگ بین دو مرحله نمونه‏برداری از نظر آماری معنی‏ دار نبود و کمترین میزان بیان ژن در برگ مربوط به رقم پیشتاز بود. مقایسه میانگین اثر متقابل رقم × اندام × مرحله نمونه ‏برداری برای ژن ZIP6 حاکی از افزایش میزان بیان نسبی ژن ZIP6 در ریشه رقم آهن‏-کارای پیشتاز در مرحله رویشی و رقم آهن-‏ناکارای فلات در مرحله زایشی بود. بیشترین میزان افزایش بیان نسبی این ژن در ریشه رقم پیشتاز در مرحله رویشی و ریشه رقم فلات در مرحله زایشی مشاهده شد. نتایج مقایسه میانگین اثر متقابل رقم × اندام × مرحله نمونهبرداری برای ژن ZIP7 نشان داد که بیشترین میزان بیان نسبی این ژن در ریشه رقم آهن- ‏کارای پیشتاز در مرحله رویشی مشاهده شد. همچنین میزان بیان نسبی این ژن در ریشه رقم آهن- کارا در مرحله رویشی بهطور معنی‏ داری بیشتر از مرحله زایشی می ‏باشد. در هر دو مرحله رویشی و زایشی در برگ میزان افزایش بیان ژن در رقم آهن‏- ناکارای فلات بیشتر بود.
نتیجهگیری: با افزایش بیان ژن ZIP3 در شرایط کمبود آهن در مرحله رویشی در ریشه رقم آهن‏- کارا نسبت به برگ احتمال می ‏رود نقش اصلی این ژن، در جذب آهن از خاک و انتقال آن به اندام هوایی در اوایل دوره رشدی در شرایط کمبود آهن باشد. ژن ZIP6 در هر دو اندام ریشه و برگ در کل دوران رشدی گیاه بیان می ‏شود با این تفاوت که با افزایش سن گیاه، میزان بیان هم بیشتر میشود. بنابراین ژن ZIP6 احتمالاً وظیفه جذب و انتقال آهن در اندام ‏های مختلف، در کل دوره رشدی گیاه را برعهده دارد و نقش مهمی را در حفظ آهن در شرایط کمبود آن ایفا می‏ کند. ژن ZIP7 تحت شرایط کمبود آهن در هر دو اندام برگ و ریشه بیان می ‏شود ولی در ریشه در مرحله رویشی در رقم آهن-‏ کارا این میزان بیان بیشتر می ‏باشد و احتمال میرود این ژن در جذب آهن از خاک و انتقال آن به اندام‏ های هوایی شرکت دارد.
متن کامل [PDF 1013 kb]   (93 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1402/9/4 | پذیرش: 1402/12/20

فهرست منابع
1. Aggett, P. (2020). Chapter 22-Iron. Present Knowledge in Nutrition, 11th ed.; Academic Press: Cambridge, MA, USA, 1, 375-392. [DOI:10.1016/B978-0-323-66162-1.00022-6]
2. Ashrafzadeh N., Abdollahi Mandoulakani B. (2023). The effect of iron deficiency on the relative expression of genes encoding transcription factors bZIP56, WRKY1 and NAM-B1 in Bread Wheat (Triticum aestivum L.). J Crop Breed, 15(45), 194-204. [In Persian] [DOI:10.61186/jcb.15.45.194]
3. Blancquaert, D., De Steur, H., Gellynck, X., & Van Der Straeten, D. (2017). Metabolic engineering of micronutrients in crop plants. Annals of the New York Academy of Sciences, 1390(1), 59-73. [DOI:10.1111/nyas.13274]
4. Brier, N. D., Gomand, S. V., Donner, E., Paterson, D., Delcour, J. A., Lombi, E., & Smolders, E. (2015). Distribution of minerals in wheat grains (Triticum aestivum L.) and in roller milling fractions affected by pearling. Journal of Agricultural and Food Chemistry, 63(4), 1276-1285. [DOI:10.1021/jf5055485]
5. Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H., & Mori, S. (2002). Cloning an iron‐regulated metal transporter from rice. Journal of Experimental Botany, 53(374), 1677-1682. [DOI:10.1093/jxb/erf004]
6. Chen, W., Feng, Y., & Chao, Y. (2008). Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 55, 400-409. [DOI:10.1134/S1021443708030175]
7. Colangelo, E. P., & Guerinot, M. L. (2006). Put the metal to the petal: metal uptake and transport throughout plants. Current Opinion in Plant Biology, 9(3), 322-330. [DOI:10.1016/j.pbi.2006.03.015]
8. Connorton, J. M., Jones, E. R., Rodríguez-Ramiro, I., Fairweather-Tait, S., Uauy, C., & Balk, J. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology, 174(4), 2434-2444. [DOI:10.1104/pp.17.00672]
9. Durmaz, E., Coruh, C., Dinler, G., Grusak, M. A., Peleg, Z., Saranga, Y., Fahima, T., Yazici, A., Ozturk, L., & Cakmak, I. (2011). Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat. Plant Molecular Biology Reporter, 29, 582-596. [DOI:10.1007/s11105-010-0264-3]
10. Eide, D., Broderius, M., Fett, J., & Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences, 93(11), 5624-5628. [DOI:10.1073/pnas.93.11.5624]
11. Evens, N. P., Buchner, P., Williams, L. E., & Hawkesford, M. J. (2017). The role of ZIP transporters and group F bZIP transcription factors in the Zn‐deficiency response of wheat (Triticum aestivum). The Plant Journal, 92(2), 291-304. [DOI:10.1111/tpj.13655]
12. FAO. (2017). FAOSTAT data-base. [cited 2017 Jan 14]. Available from: http://faostat.fao.org/beta/en/. Retrieved 23 june from
13. Fitzgerald, M. A., Bergman, C. J., Resurreccion, A. P., Möller, J., Jimenez, R., Reinke, R. F., Martin, M., Blanco, P., Molina, F., & Chen, M. H. (2009). Addressing the dilemmas of measuring amylose in rice. Cereal Chemistry, 86(5), 492-498. [DOI:10.1094/CCHEM-86-5-0492]
14. Fu, X. Z., Zhou, X., Xing, F., Ling, L. L., Chun, C. P., Cao, L., ... & Peng, L. Z. (2017). Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Frontiers in Plant Science, 8, 588. [DOI:10.3389/fpls.2017.00588]
15. Ghasemi, S., Khoshgoftarmanesh, A. H., Sayed-Tabatabaei, B. E., & Khaksar, G. (2015). Expression level of ZIP1 and ZIP5 transporters in root and leaves of three different zinc-efficiency wheat cultivars. Journal of Plant Process and Function, 4(11), 23-32.
16. Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, 95(12), 7220-7224. [DOI:10.1073/pnas.95.12.7220]
17. Grotz, N., & Guerinot, M. L. (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1763(7), 595-608. [DOI:10.1016/j.bbamcr.2006.05.014]
18. Henriques, R., Jásik, J., Klein, M., Martinoia, E., Feller, U., Schell, J., Pais, M. S., & Koncz, C. (2002). Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 50, 587-597. [DOI:10.1023/A:1019942200164]
19. Hensawang, S., Lee, B. T., Kim, K. W., & Chanpiwat, P. (2020). Probabilistic assessment of the daily intake of microelements and toxic elements via the consumption of rice with different degrees of polishing. Journal of the Science of Food and Agriculture, 100(10), 4029-4039. [DOI:10.1002/jsfa.10448]
20. Kasirajan, L., Boomiraj, K., & Bansal, K. (2013). Optimization of genetic transformation protocol mediated by biolistic method in some elite genotypes of wheat (Triticum aestivum L.). African Journal of Biotechnology, 12(6).
21. Kavitha, P., Kuruvilla, S., & Mathew, M. (2015). Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97, 165-174. [DOI:10.1016/j.plaphy.2015.10.005]
22. Khan, S. A. (2013). Genetic Variability and Heritability Estimates in F^ sub 2^ wheat Genotypes. International Journal of Agriculture and Crop Sciences, 5(9), 983.
23. Khavarinejad, M., & Babajanov, A. (2011). Identification of relationships of quantitative and morphological traits to spring wheat genotype yields in drought levels of Mazandaran (north of Iran). International Journal of Agricultural Science, 1(6), 329-339.
24. Kiely, M. E. (2021). Risks and benefits of vegan and vegetarian diets in children. Proceedings of the Nutrition Society, 80(2), 159-164. [DOI:10.1017/S002966512100001X]
25. Kim, J., Aydemir, T. B., Jimenez-Rondan, F. R., Ruggiero, C. H., Kim, M.-H., & Cousins, R. J. (2020). Deletion of metal transporter Zip14 (Slc39a14) produces skeletal muscle wasting, endotoxemia, Mef2c activation and induction of miR-675 and Hspb7. Scientific Reports, 10(1), 4050. [DOI:10.1038/s41598-020-61059-2]
26. Li, S., Zhou, X., Huang, Y., Zhu, L., Zhang, S., Zhao, Y., Guo, J., Chen, J., & Chen, R. (2013). Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13(1), 1-14. [DOI:10.1186/1471-2229-13-114]
27. Li, S., Zhou, X., Li, H., Liu, Y., Zhu, L., Guo, J., Liu, X., Fan, Y., Chen, J., & Chen, R. (2015). Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis. PLoS One, 10(8), e0136647. [DOI:10.1371/journal.pone.0136647]
28. Marschner, H. (1998). Mineral nutrition of higher plants. Norlforlk. In: Londres. Academyc press Ltd.
29. Milner, M. J., Seamon, J., Craft, E., & Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64(1), 369-381. [DOI:10.1093/jxb/ers315]
30. Niazkhani, M., Abdollahi Mandoulakani, B., Jafari, M., & Rasouli-Sadaghiani, M. (2021). Induced Expression of Six ZIP Genes by Zinc Deficiency is Associated with Increased Uptake and Root to Shoot Translocation of Zn in Zn-efficient Bread Wheat Cultivars. Russian Journal of Plant Physiology, 68, S61-S71. [DOI:10.1134/S1021443721070098]
31. Niazkhani, S., Abdollahi Mandoulakani, B., Jafari, M., & Rasouli-Sadaghiani, M. (2018). Studying the expression of ZIP1, ZIP3 and ZIP6 genes in bread wheat under Zn deficiency conditions. Cereal Research, 8 (3), 345-358. [In Persian]
32. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29(9), e45-e45. [DOI:10.1093/nar/29.9.e45]
33. Rahemi, S., Khorassani, R., & Halajnia, A. (2014). Uptake efficiency of Iron in different wheat varieties. Water and Soil, 28(3), 556-564.
34. Ramesh, S. A., Choimes, S., & Schachtman, D. P. (2004). Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Molecular Biology, 54, 373-385. [DOI:10.1023/B:PLAN.0000036370.70912.34]
35. Satyavathi, C. T., Ambawat, S., Khandelwal, V., & Srivastava, R. K. (2021). Pearl millet: a climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Frontiers in Plant Science, 12, 659938. [DOI:10.3389/fpls.2021.659938]
36. Sinclair, S. A., & Krämer, U. (2012). The zinc homeostasis network of land plants. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1553-1567. [DOI:10.1016/j.bbamcr.2012.05.016]
37. Taiz, L., & Zeiger, E. (2002). Photosynthesis: physiological and ecological considerations. Plant Physiology, 9, 172-174.
38. Teymouri Rad L, Fayaz Moghaddam A, Abdollahi Mandoulakani B, Wehbi E. (2022). Expression pattern of genes encoding bZIP56, WRKY1 and NAM-B1 transcription factors under Zn deficiency conditions in bread wheat (Triticum aestivum L.). J Crop Breed, 14(42), 106-116. [DOI:10.52547/jcb.14.42.106]
39. Tiong, J., McDonald, G., Genc, Y., Shirley, N., Langridge, P., & Huang, C. Y. (2015). Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root‐to‐shoot translocation of Zn in barley (Hordeum vulgare). New Phytologist, 207(4), 1097-1109. [DOI:10.1111/nph.13413]
40. Tuteja, N., & Gill, S. S. (2012). Crop improvement under adverse conditions. Springer. [DOI:10.1007/978-1-4614-4633-0]
41. Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 1-10. [DOI:10.1186/s12870-016-0771-y]
42. Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223-1233. [DOI:10.1105/tpc.001388]
43. Von Grebmer, K., Saltzman, A., Birol, E., Wiesman, D., Prasai, N., Yin, S., Yohannes, Y., Menon, P., Thompson, J., & Sonntag, A. (2014). Synopsis: 2014 global hunger index: The challenge of hidden hunger (Vol. 83). Intl Food Policy Research Institute.
44. Wang, M., Gong, J., & Bhullar, N. K. (2020). Iron deficiency triggered transcriptome changes in bread wheat. Computational and Structural Biotechnology Journal, 18, 2709-2722. [DOI:10.1016/j.csbj.2020.09.009]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.