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Extended Abstract

Background: Wheat (Triticum aestivum L.) is a strategic cereal crop that plays a vital role in
global food security, serving as a primary source of nutrition for over 35% of the world's
population. However, the sustainable production of this crucial crop faces numerous challenges,
including abiotic stresses. Among these, salinity stress stands out as one of the most significant
factors limiting wheat production in many regions worldwide. Salinity stress negatively impacts
not only seed germination and seedling establishment but also severely affects various growth
stages, final yield, and even grain quality parameters. The mechanisms of salt-induced damage
include osmotic stress, ionic toxicity, nutritional imbalance, and oxidative stress. Given the
increasing expansion of saline soils and the reduction of quality water resources, identifying and
developing salt-tolerant cultivars has become essential in wheat breeding programs. Salt tolerance
is a complex quantitative trait controlled by numerous genes and intricate physiological and
biochemical networks. Since these mechanisms involve multiple physiological and
morphological characteristics, assessing genetic diversity and identifying molecular markers
associated with key physiological and morphological traits represents a crucial step for the genetic
improvement of this crop. The utilization of molecular markers, particularly Simple Sequence
Repeats (SSRs), which are linked to genomic regions controlhng salt tolerance, enables more
precise and efficient selection of tolerant genotypes through Marker-Assisted Selectlon (MAS).
Therefore, this study was conducted to identify genetic diversity and important molecular markers
associated with key seedling traits in wheat genotypes under both non-stress and salt-stress
conditions.

Methods: In the phenotypic evaluation phase, 37 wheat genotypes, including commercial
varieties and promising lines, were studied in a Randomized Complete Block Design (RCBD)
with three replications under two non-stress and salt stress conditions. The experiment was
conducted in 2020 in the Salinity Research Greenhouse of the Cereal Research Department at
the Seed and Plant Improvement Institute (SPII), Karaj, using the Hoagland nutrient solution as
the growth medium.

A standard Hoagland nutrient solution was used for the control treatment (non-stress). The salt
stress treatment consisted of the Hoagland solution supplemented with NaCl to achieve a salinity
level of 12 dS/m.

Important physiological and morphological traits were measured after a six-week growth period,
including leaf chlorophyll content (using a SPAD meter), flag leaf length, width and area
(measured using Imagel software), total biomass, and concentrations of sodium (Na*) and
potassium (K*) ions (measured by flame photometry), subsequently calculating the K*/Na* ratio.
In the molecular phase, genomic DNA was extracted from young, disease-free leaves using the
CTAB method. The quality and quantity of the extracted DNA, including concentration and
purity, were assessed using spectrophotometry and 1% agarose gel electrophoresis. All genotypes
were evaluated using 27 SSR markers previously reported to be associated with Quantitative Trait
Loci (QTLs) for salt tolerance in wheat. For morphological data analysis, the analysis of variance
(ANOVA) was performed using SPSS software (version 21). In the molecular analyses,
population structure was determined using the Bayesian method implemented in the Structure
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software (version 2.3.4). Diversity indices and molecular variance (AMOVA) were calculated
using GenAlEx software (version 6.501). Principal Coordinate Analysis (PCoA) and cluster
analysis based on the UPGMA algorithm were performed using DARwin software (version 6).
Association analysis was conducted using the Mixed Linear Model (MLM) in TASSEL software
(version 4).

Results: The ANOVA for the measured traits under both conditions revealed statistically
significant differences (p < 0.01) among the genotypes for all traits: leaf chlorophyll content, flag
leaf length, width and area, total biomass, sodium ion concentration, potassium ion concentration,
and the K*/Na* ratio. These results indicate the presence of high genetic diversity among the
investigated genotypes, providing a basis for selecting superior genotypes. Population structure
analysis based on the maximum value of AK classified the genotypes into two potential
subpopulations (K=2). Subpopulation 1 comprised 18 genotypes (four commercial varieties and
14 promising lines), while subpopulation 2 contained 19 genotypes (10 commercial varieties and
nine promising lines). Based on various diversity indices (e.g., Shannon's Information Index, Nei's
gene diversity), subpopulation 2 exhibited considerably higher genetic diversity than
subpopulation 1. AMOVA also confirmed significant genetic differentiation between the two
subpopulations. Based on the results of the association analysis using the Mixed Linear Model
(MLM), 29 significant (p < 0.01) marker-trait associations (MTAs) were identified under non-
stress conditions, and 30 significant (p < 0.01) MTAs were found under salt stress conditions.
Under salt stress, the markers gwm108 and gwm47 showed strong associations with sodium ion
concentration and the K*/Na" ratio, indicating their potential utility for identifying salt-tolerant
genotypes.

Conclusion: This study provides valuable information regarding the genetic diversity of the
investigated wheat genotypes and the genetic basis of the studied traits under salt stress. The
identification of molecular markers significantly associated with key physiological and
morphological traits under salinity stress enables the application of Marker-Assisted Selection for
improving salt tolerance in wheat. These findings can be utilized to advance wheat breeding
programs for the selection and development of high-yielding, salt-tolerant genotypes. The
identified markers, particularly gwm108 and gwm47, can serve as valuable molecular tools in
wheat breeding programs targeting salinity-affected regions.
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1 Alvd//Aldan/las 58/3/Kvr 21 Sakha 8/Darab#2//1-66-22
2 338cb/landrace 22 1-66-22/pishtaz
3 Berkut 23 Desprez80/Rsh//Arg
4 Mahooti (Local variety) 24 1-66-22
5 Soissons/Kvr 25 soison/ pishtaz (RWYT-87-140)
6 Sorkhtokhm (Local variety) 26 W3918A/Jup//Gru90-201736/3/Moghan1/Falat
7 1-63-31/3/12300/tob//cno/sx 27 Mrn/Catbird
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9 Stm/3/Kal//V534/Jit/716 29 Maroon
10 Vee”s”/Nac//1-66-22 30 Ofough
11 Roshan (Local variety) 31 1-66-22/SNH.9
12 Moghan3 32 Atrak/3/Chen/Aeg.sq(Taus)//BCN CMBW98
13 Falat 33 Kauz*2/Opata//Kauz/3/Sakha 8/4/Tam 200
14 Gods 34 Alvd//Aldan/Ias 58/3/Karchia
15 Shiraz 35 Barzghar
16 Mina/Molan//Atrak-KJF 36 Sistan
17 Darab#2 37 Arta
18 Gaspard
19 KRAL-1-4
20 T.AesxTi(La(Frkal.xGb))/3/Kauz*2/Opata//Kauz
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Table 2. The list of investigated SSR markers
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1 S1 cfa2043 CAGCCGAAGAAGGATTTCTG GAGGCAGGAACTTAGGGGAG 2A/2B 61 Sourdille et al., 2003

2 S2 barc353.1 GAAGTTCCCAAAATGCCTCTGTC GCGGATCGAAGACCTAAGAAAAG 2AL 55 Song et al., 2002, 2005
3 S3 gwm445 TTTGTTGGGGGTTAGGATTAG CCTTAACACTTGCTGGTAGTGA 2A 61 Rdder et al., 1998

4 S6 2pw2206 GTTTTGCATCAACTCTGCCA AGACTCACTTTGTGGCATCTGA 2A 60 Pestsova et al., 2000

5 S8 gwm47 TTGCTACCATGCATGACCAT TTCACCTCGATTGAGGTCCT 2A/2B 61 Roder et al., 1998

6 S9 gwm294 GGATTGGAGTTAAGAGAGAACCG GCAGAGTGATCAATGCCAGA 2A 61 Roder et al., 1998

7 S11 gwm372 AATAGAGCCCTGGGACTGGG GAAGGACGACATTCCACCTG 2A 61 Roder et al., 1998

8 S12 gwm339 AATTTTCTTCCTCACTTATT AAACGAACAACCACTCAATC 2A 51 Roder et al., 1998

9 S15 gwm249 CAAATGGATCGAGAAAGGGA CTGCCATTTTTCTGGATCTACC 2A, 2D 55 Roder et al., 1998

10 S16 gwm95 GATCAAACACACACCCCTCC AATGCAAAGTGAAAAACCCG 2A 61 Roder et al., 1998

11 S18 gwm312 ATCGCATGATGCACGTAGAG ACATGCATGCCTACCTAATGG 2A 51 Roder et al., 1998

12 S19 wmc170 ACATCCACGTTTATGTTGTTGC TTGGTTGCTCAACGTTTACTTC 2A,2D 60 Gupta et al., 2002

13 S22 gwml108 CGACAATGGGGTCTTAGCAT TGCACACTTAAATTACATCCGC 3B 61 Roder et al., 1998

14 S23 wme326 GGAGCATCGCAGGACAGA GGACGAGGACGCCTGAAT 3B 61 Gupta et al., 2002

15 S24 wmc291 TACCACGGGAAAGGAAACATCT CACGTTGAAACACGGTGACTAT 3B 61 Gupta et al., 2002

16 S25A cfa2170a TGGCAAGTAACATGAACGGA ATGTCATTCATGTTGCCCCT 3A/3B 61 Sourdille et al., 2003
17 S25B cfa2170b TGGCAAGTAACATGAACGGA ATGTCATTCATGTTGCCCCT 3A/3B 61 Sourdille et al., 2003
18 S26 wmc687 AGGACGCCTGAATCCGAG GGGAGCGTAGGAGGACTAACA 3B 61 Gupta et al., 2002

19 S28 barc84 CGCATAACCGTTGGGAAGACATCTG GGTGCAACTAGAACGTACTTCCAGTC 3B 51 Song et al., 2002, 2005
20 S30 gwml94 GATCTGCTCTACTCTCCTCC CGACGCAGAACTTAAACAAG 4D 61 Roder et al., 1998
21 S36 gpw345 TAACGTCTGCCAACCTCGTG ATGGGCAGTGGTATTGAGGT 4D 60 Pestsova et al., 2000
22 S38 cfd9 TTGCACGCACCTAAACTCTG CAAGTGTGAGCGTCGG 3D 60 Guyomarc’h et al., 2002
23 S39 cfd18 CATCCAACAGCACCAAGAGA GCTACTACTATTTCATTGCGACCA 5D 60 Guyomarc’h et al., 2002
24 S40 cfd183 ACTTGCACTTGCTATACTTACGAA GTGTGTCGGTGTGTGGAAAG 5D 60 Guyomarc’h et al., 2002
25 S42 wmc405 GTGCGGAAAGAGACGAGGTT TATGTCCACGTTGGCAGAGG 7A/5D/5B/7D/1D 61 Gupta et al., 2002

26 S43 gwm291 CATCCCTACGCCACTCTGC AATGGTATCTATTCCGACCCG 5A 61 Roder et al., 1998

27 S44 gwm410 GCTTGAGACCGGCACAGT CGAGACCTTGAGGGTCTAGA 5A /2B 61 Roder et al., 1998
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Figure 1. (a) The Barplat Population structure for 37 wheat genotypes based on 27 SSR markers (K = 2). Each

color shows a subpopulation or cluster. The numbers on the horizontal and vertical axes show the number of people
and the belonging coefficient of each person to each cluster, respectively. (b) The Delta K diagram
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Table 3. Analysis of variance for seedling characteristics in advanced wheat genotypes

(MS) laye (Lo
Source of &ljl an o a8 Sy Job s S s Js sas ol ol ol Copnd
ariati " g ¢ g .
varation Dfegrge of Chlom:hyll Leaf length ‘5)’ Leaf area oologa 2 f""‘il‘f f””;“\‘“’ ?
reedom content Leaf width Total dry Na K K*/ Na
matter
J“""“ 1 717.30™ 185.24™ 2.70" 4413.91™ 68.55™ 48.37" 13.35" 13117.99™
Environment
by ollas
Environmental 4 16.79 13 0.03 13.88 0.03 0.004 0.10 5.17
error
555 36 15.42" 17.82" 0.02" 18.17 0.11" 031" 0.66" 49.79™
Genotype
g pxlace . . . . . - - -
Environment 36 6.92 6.00 0.016 14.27 0.06 0.23 0.45 36.01
x Genotype
s 144 4.00 0.64 0.003 1.62 0.01 0.006 0.03 4.31
Error
oyl
(/) ul)wu - 5.01 2.89 5.46 5.96 6.11 13.01 8.38 21.30
Coefficient of
variation

W3 o i 1) do)d S g doyd iy Jleisl polaw p3 (g)b gime iy i g
* and ** show significance at 5% and 1% levels, respectively.
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Table 4. The number of observed and effective alleles, Shannon’s information index, polymorphic information content,
total diversity, intra-population diversity, gene differentiation coefficient, and gene flow from 27 markers in
wheat genotypes

e e TR ] e
Primer No. of 2ad oanllo > ol eS| Hr e o= Nm IS
No. o Na+ SE Ne + SE I:SE Hs Iacnas e
Gst

cfa2043 3 1.66+0.33 1.41+0.17 0.37+0.11 0.25+0.05 0.2420.05 0.03 15.32 0.27
barc353/1 3 1.33+0.33 1.32+0.14 0.28+0.12 0.37+0.02 0.19+0.00 0.48 0.53 0.32
gwm445s 4 1.50+0.32 1.30+0.11 0.30+0.09 0.20+0.04 0.19+0.03 0.07 6.56 0.26
gpw2206 7 1.14+0.27 1.13+0.04 0.16+0.05 0.13+0.02 0.90+0.008 0.27 1.30 0.21
gwmd47 8 1.12+0.25 1.10£0.04 0.13+0.04 0.10+0.02 0.07+0.007 0.24 1.51 0.14
gwm294 6 1.33+0.28 1.15+0.05 0.19+0.05 0.14+0.03 0.11£0.01 0.22 1.71 0.19
gwm372 5 0.90+0.31 1.12+0.06 0.15+0.06 0.17+0.03 0.09+0.005 0.47 0.56 0.27
gwm339 5 1.40+0.30 1.18+0.07 0.22+0.06 0.18+0.03 0.13+0.01 0.29 1.21 0.24
gwm249 2 2.00+0.00 1.50+0.17 0.46+0.11 0.41+0.01 0.30+0.003 0.26 136 0.45
gwm95 4 1.75+0.25 1.28+0.12 0.28+0.08 0.22+0.04 0.17£0.02 0.24 1.56 0.28
gwm312 5 1.00+0.33 1.17+0.07 0.20+0.07 0.18+0.03 0.12+0.005 0.34 0.93 0.32
wmcl70 5 1.40+0.30 1.19+0.06 0.24+0.06 0.18+0.03 0.14+0.01 0.21 1.83 0.24
gwm108 4 1.12+0.35 1.16£0.09 0.17+0.08 0.19+0.04 0.10+0.007 0.44 0.61 0.24
wme326 5 1.40+0.30 1.2240.09 0.25+0.07 0.17+0.03 0.15+0.01 0.13 3.25 0.30
wmc291 3 1.66+0.33 1.37+0.13 0.37+0.10 0.28+0.04 0.23+0.02 0.18 224 0.35
cfa2170a 2 1.25+0.47 1.35+0.20 0.30+0.17 0.34+0.02 0.20+0.00 0.39 0.75 0.36
cfa2170b 3 1.66+0.33 1.44+0.11 0.43+0.09 0.29+0.01 0.28+0.01 0.04 11.03 0.41
wmc687 6 1.16+0.29 1.15+0.05 0.19+0.05 0.14+0.03 0.11£0.01 0.22 1.76 0.22
barc84 2 1.25+0.47 1.22+0.18 0.21+0.14 0.16+0.02 0.13+0.01 0.16 2.49 0.10
gwm194 3 1.66+0.33 1.32+0.10 0.34+0.09 0.26+0.04 0.21£0.02 0.17 2.34 0.30
gpw345 4 1.25+0.36 1.34+0.13 0.30+0.10 0.20+0.05 0.20+0.05 0.006 74.71 0.33
cfd9 6 1.33+£0.28 1.15+0.05 0.19+0.05 0.14+0.03 0.11£0.01 0.23 1.60 0.20
cfd18 7 1.07+0.26 1.08+0.03 0.12+0.04 0.110.02 0.06+0.002 0.43 0.65 0.15
cfd183 2 2.00+0.00 1.50+0.15 0.47+0.11 0.37+0.02 0.31+0.01 0.17 2.34 0.39
wmc405 2 1.50+0.50 1.47+0.17 0.42+0.14 0.33+0.04 0.28+0.03 0.15 2.68 0.33
gwm291 2 1.50+0.50 1.46+0.25 0.36+0.17 0.42+0.01 0.24+0.00 0.41 0.70 0.48
gwm410 3 1.16+0.40 1.20+0.12 0.21£0.10 0.22+0.04 0.13+0.005 0.37 0.82 0.25
ﬂi:: 37 1.16+0.40 1.2240.01 0.24+0.01 0.20+0.03 0.14+0.01 0.25 1.46 0.26
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Table 5. Genetic diversity indices of the studied wheat genotypes
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Table 6. The molecular analysis of variance (AMOVA) for diversity between and within populations of wheat

genotypes
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PhiPT Prob PhiPT Value % - 3)91).3 wtﬁ)" Ul&é’m LX‘SJL:A Degrees of )-:-rr"é.’L-‘" .
Est. Var. MS froedom Sources of variation
0.001 0.392 39% 6.802 136.316 1 laa> oot
Between populations
61% 10.562 10.562 35 Lh > 09>
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100% 17.365 36
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Table 7. Analysis to principal components for the studied markers based on Darwin

Dailge Failge Yailge Yeilge Vailye 4l pasla
Component 5 Component 4 Component 3 Component 2 Component 1 %Lrgél;rlty
0.012 0.013 0.014 0.026 0.06 °5*-_9 2l
Special values oS, )l.b
6.26 7.00 7.59 13.62 31.08 [Eaidlia Darwin

Cumulative share
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Figure 2. The biplot diagram of principal component analysis based on 37 wheat genotypes
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Figure 3. The cluster analysis diagram of 37 wheat genotyps based on the UPGMA algorithm
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Figure 4. Linkage imbalance plot. The upper diameter indicates the degree of linkage imbalance and the
lower diameter indicates the P-value for the pair of markers.
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Table 8. Continuous markers with the studied traits in wheat genotypes under normal conditions based on MLM

R? (o P e MAF 959995 e Sl Slao
Adjusted R-squared P-value Chromosomal location Marker Traits
0.235 0.006 0.02 2A gwm445-4
0.191 0.013 0.32 3A/3B cfa2170b-3
0.114 0.05 0.05 2A 2pw2206-7 éﬁfgipf“ﬁ’
levef,
0.114 0.05 0.05 2A,2D wmel70-3
0.114 0.05 0.24 2A/2B cfa2043-1
0.171 0.018 0.10 2A gwmd45-3 Sy Jsb
0.146 0.028 0.21 2A 2pw2206-6 Leaf length
0.249 0.005 0.02 2AL barc353.1-2
0.175 0.017 0.02 2A gwm294-5 P
2 02
0.119 0.046 0.24 3A/3B cfa2170a-1 Leaf width
0.119 0.046 0.24 3A/3B cfa2170a-2
0.146 0.028 0.10 2A gwmd445-3
0.132 0.036 0.02 2AL barc353.1-2 Sy g
Leaf area
0.123 0.042 0.21 2A gwmd445-2
0.173 0.017 0.08 2A/2B gwm47-5
0.140 0.031 0.02 5A/2B gwm410-2
0.135 0.034 0.02 2AL barc353.1-2 .
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[Lcade ASD
0.190 0.013 0.37 4D gpw345-2 K
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0.160 0.022 0.45 2A 2pw2206-1 s &
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Table 9. Continuous markers with the studied traits in stressed wheat genotypes based on MLM

. Z ae 3 e . R2 s o pdd
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. Chromosomal MAF Adjusted R-
Traits Marker location P-value squared
Jibo S o
Cﬁfgophyu gwm291-2 5A 0.4 0.037 0.128
level
2pw2206-3 7A 0.10 0.010 0.201
. ewm95-2 2A 0.08 0.018 0.166
Sx b gwm95-3 2A 0.45 0.019 0.164
Leaf length gwm410-1 5A/2B 0.08 0.047 0.114
cfa2043-3 2A/2B 0.02 0.048 0.113
S 02 cfd18-6 5D 0.35 0.015 0.18
Leaf width
gwm339-2 2A 0.10 0.029 0.139
. w2206-3 2A 0.10 0.032 0.135
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Leaf area gwm410-1 5A/2B 0.08 0.047 0.115
cfd183-1 5D 0.27 0.049 0.112
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rETOR
F 9 gwm194-2 4D 0.29 0.034 0.131
ologs
TDM gpw345-2 4D 0.37 0.040 0.123
2pw2206-3 2A 0.10 0.016 0.175
gwm108-3 3B 0.32 0.028 0.146
e Ol gwm108-4 3B 0.24 0.030 0.142
Na gwm47-5 2A/2B 0.08 0.033 0.136
gwm294-6 2A 0.05 0.041 0.124
gwm312-1 2A 0.18 0.041 0.124
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