1. Ahakpaz, F., H. Abdi, E. Neyestani, A. Hesami, B. Mohammadi, K.N. Mahmoudi, G. Abedi-Asl, M. R. J. Noshabadi, F. Ahakpaz and H. Alipour. 2021. Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. Agricultural Water Management, 245: 106665. [
DOI:10.1016/j.agwat.2020.106665]
2. Anandan, A. and R. Eswaran. 2009. Genotype by environment interactions of rice (Oryza sativa L.) hybrids in the east coast saline region of Tamil Nadu.
3. Annicchiarico, P. 2002. Genotype x environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. Food & Agriculture Org.
4. Annicchiarico, P., L. Russi, E. Piano and F. Veronesi. 2006. Cultivar adaptation across Italian locations in four turfgrass species. Crop Science, 46(1): 264-272. [
DOI:10.2135/cropsci2005.0047]
5. Baker, R. 1988. Tests for crossover genotype-environmental interactions. Canadian Journal of plant science, 68(2): 405-410. [
DOI:10.4141/cjps88-051]
6. Ceccarelli, S. 1996. Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. Plant adaptation and crop improvement. 467-486.
7. Cheloei, G., G.A. Ranjbar, N. Babaeian Jelodar, N. Bagheri and M.Z. Noori. 2020. Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa L.) advanced mutant genotypes of Tarrom-Mahalli. Iranian Journal of Genetics and Plant Breeding, 9(1): 70-83.
8. Cook, D. and R. Scott. 1993. The sugar beet crop: science into practice. New York, USA, Champan and Hall Press, 154 pp. [
DOI:10.1007/978-94-009-0373-9]
9. De Vita, P., A. Mastrangelo, L. Matteu, E. Mazzucotelli, N. Virzi, M. Palumbo, M.L. Storto, F. Rizza and L. Cattivelli. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field crops research, 119(1): 68-77. [
DOI:10.1016/j.fcr.2010.06.016]
10. Duvick, D.N., J. Smith and M. Cooper. 2004. Changes in performance, parentage, and genetic diversity of successful corn hybrids, 1930-2000. edn. C. W. Smith, J. Betrˇıan and E. C. A. Runge, editors, JHoboken, NJ, ohn Wiley & Sons, 65-97 pp.
11. Ebdon, J. and H. Gauch. 2002. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype× environment interaction. Crop Science, 42(2): 489-496. [
DOI:10.2135/cropsci2002.4890]
12. FAO. 2018. Food and agriculture organization. World Food and Agriculture- Statistical Pocketbook,. [
DOI:10.4060/cb1521en]
13. Farshadfar, E., R. Mohammadi, M. Aghaee and Z. Vaisi. 2012. GGE biplot analysis of genotype x environment interaction in wheat-barley disomic addition lines. Australian Journal of Crop Science, 6(6): 1074-1079.
14. Fathi, M., G. Ranjbar, M. Zangi, S. Tabar and H.N. Zarini. 2018. Analysis of stability and adaptation of cotton genotypes using GGE Biplot method. Trakia Journal of Sciences, 16(1): 51. [
DOI:10.15547/tjs.2018.01.009]
15. Gabriel, K.R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3): 453-467. [
DOI:10.1093/biomet/58.3.453]
16. Gauch, H. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier Science Publishers.
17. Gauch, H.G. and R.W. Zobel. 1997. Identifying mega‐environments and targeting genotypes. Crop Science, 37(2): 311-326. [
DOI:10.2135/cropsci1997.0011183X003700020002x]
18. Jaggard, K., H. Koch, J.A. Sanz, A. Cattanach, R. Duval, H. Eigner, G. Legrand, R. Olsson, A. Qi and J. Thomsen. 2012. The yield gap in some sugar beet producing countries. International sugar journal, 114(1363): 496-499.
19. Kang, M. 2004. Breeding: genotype by environment interaction. In 'Encyclopedia of plant and crop science'.(Ed. RM Goodman). Marcel Dekker: New York, 218-221 pp. [
DOI:10.1081/E-EPCS-120010525]
20. Kang, M.S. 1997. Using genotype-by-environment interaction for crop cultivar development. Advances in agronomy, 62(1): 199-252. [
DOI:10.1016/S0065-2113(08)60569-6]
21. Karimizadeh, R., A. Asghari, R. Chinipardaz, O. Sofalian and A. Ghaffari. 2016. Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turkish Journal of Field Crops, 21(2): 174-183. [
DOI:10.17557/tjfc.17390]
22. Karimizadeh, R., H. Dehghani and Z. Dehghanpour. 2008. Use of AMMI method for estimating genotype-environment interaction in early maturing corn hybrids. Seed and Plant Journal, 23(4): 531-546.
23. Kempton, R. 1984. The use of biplots in interpreting variety by environment interactions. The Journal of Agricultural Science, 103(1): 123-135. [
DOI:10.1017/S0021859600043392]
24. Koundinya, A., B. Ajeesh, V. Hegde, M. Sheela, C. Mohan and K. Asha. 2021. Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. Scientia Horticulturae, 281: 109949. [
DOI:10.1016/j.scienta.2021.109949]
25. Kunz, M., D. Martin and H. Puke. 2002. Precision of beet analyses in Germany explained for polarization. Zuckerindustrie, 127(1): 13-21.
26. McMichael, B. and J. Quisenberry. 1993. The impact of the soil environment on the growth of root systems. Environmental and experimental botany, 33(1): 53-61. [
DOI:10.1016/0098-8472(93)90055-K]
27. Monteiro, F., L. Frese, S. Castro, M. C. Duarte, O.S. Paulo, J. Loureiro and M.M. Romeiras. 2018. Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Frontiers in plant science, 9: 74-85. [
DOI:10.3389/fpls.2018.00074]
28. Mostafavi, K. and A. Saremirad. 2021. Genotype - Environment Interaction Study in Corn Genotypes Using additive main effects and multiplicative interaction method and GGE- biplot Method. Journal of Crop Production, 14(3): 1-12.
29. Olivoto, T., A.D. Lúcio, J.A. da Silva, V.S. Marchioro, V.Q. de Souza and E. Jost. 2019. Mean performance and stability in multi‐environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6): 2949-2960. [
DOI:10.2134/agronj2019.03.0220]
30. Olivoto, T., A.D.C. Lúcio, J.A.G. da Silva, B.G. Sari and M.I. Diel. 2019. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agronomy Journal, 111(6): 2961-2969. [
DOI:10.2134/agronj2019.03.0221]
31. Olivoto, T., M. Nardino, D. Meira, C. Meier, D.N. Follmann, V.Q. de Souza, V.A. Konflanz and D. Baretta. 2021. Multi‐trait selection for mean performance and stability in maize. Agronomy Journal, 113(5): 3968-3974. [
DOI:10.1002/agj2.20741]
32. Pardo, A., M. Amato and F.Q. Chiarandà. 2000. Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. European Journal of Agronomy, 13(1): 39-45. [
DOI:10.1016/S1161-0301(00)00056-3]
33. Raiger, H. and V. Prabhakaran. 2001. A study on the performance of a few non-parametric stability measures using pearl-millet data. Indian J. Genet, 61(1): 7-11.
34. Ranji, Z., M. Mesbah, R. Amiri and S. Vahedi. 2005. Study on the efficiency of AMMI method and pattern analysis for determination of stability in sugar beet varieties. Iranian Journal of Crop Science, 7(1): 1-20.
35. Ribeiro, I.C., C. Pinheiro, C.M. Ribeiro, M.M. Veloso, M.C. Simoes-Costa, I. Evaristo, O. S. Paulo and C. P. Ricardo. 2016. Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Frontiers in Plant Science, 7(1): 1293. [
DOI:10.3389/fpls.2016.01293]
36. Sabaghnia, N., H. Dehghani, B. Alizadeh and M. Mohghaddam. 2010. Genetic analysis of oil yield, seed yield, and yield components in rapeseed using additive main effects and multiplicative interaction biplots. Agronomy Journal, 102(5): 1361-1368. [
DOI:10.2134/agronj2010.0084]
37. Saremirad, A. and D. Taleghani. 2022. Utilization of Univariate Parametric and non-Parametric Methods in the Stability Analysis of Sugar Yield in Sugar Beet (Beta vulgaris L.) Hybrids. Journal of Crop Breeding, 14(43): 49-63 (In Persian). [
DOI:10.52547/jcb.14.43.49]
38. Sharifi, P., A. Abbasian and A. Mohaddesi. 2021. Evaluation the Mean Performance and Stability of Rice Genotypes by Combining Features of AMMI and BLUP Techniques and Selection Based on Multiple Traits. Plant Genetic Researches, 7(2): 163-180. [
DOI:10.52547/pgr.7.2.13]
39. Sharifi, P., H. Aminpanah, R. Erfani, A. Mohaddesi and A. Abbasian. 2017. Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Science, 24(3): 173-180. [
DOI:10.1016/j.rsci.2017.02.001]
40. Signor, C. E. L., S. Dousse, J. Lorgeou, J. B. Denis, R. Bonhomme, P. Carolo and A. Charcosset. 2001. Interpretation of genotype× environment interactions for early maize hybrids over 12 years. Crop Science, 41(3): 663-669. [
DOI:10.2135/cropsci2001.413663x]
41. Simmonds, N. 1991. Selection for local adaptation in a plant breeding programme. Theoretical and Applied Genetics, 82(3): 363-367. [
DOI:10.1007/BF02190624]
42. Tardieu, F. 2013. Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Frontiers in Physiology, 4(17): 1-11. [
DOI:10.3389/fphys.2013.00017]
43. Tollenaar, M. and E. Lee. 2002. Yield potential, yield stability and stress tolerance in maize. Field crops research, 75(2-3): 161-169. [
DOI:10.1016/S0378-4290(02)00024-2]
44. Trimpler, K., N. Stockfisch and B. Märländer. 2017. Efficiency in sugar beet cultivation related to field history. European Journal of Agronomy, 91: 1-9. [
DOI:10.1016/j.eja.2017.08.007]
45. Yan, W. and M.S. Kang. 2002. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press. [
DOI:10.1201/9781420040371]
46. Yan, W., M.S. Kang, B. Ma, S. Woods and P.L. Cornelius. 2007. GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2): 643-653. [
DOI:10.2135/cropsci2006.06.0374]
47. Zobel, R.W., M.J. Wright and H.G. Gauch Jr. 1988. Statistical analysis of a yield trial. Agronomy Journal, 80(3): 388-393. [
DOI:10.2134/agronj1988.00021962008000030002x]
48. Zuffo, A.M., F. Steiner, J.G. Aguilera, P.E. Teodoro, L.P.R. Teodoro and A. Busch. 2020. Multi‐trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. Journal of Agronomy and Crop Science, 206(6): 815-822. [
DOI:10.1111/jac.12409]