دوره 15، شماره 46 - ( تابستان 1402 )                   جلد 15 شماره 46 صفحات 72-62 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibi Daronkolaei M, babaeizad V, Tajick ghanbari M A, Rahimian H, Dehestani A. (2023). The Effect of Potassium Phosphite in the Induction of Some Rice Resistance Genes in Following the Sheet Blight Disease Agent Rhizoctinia Solani. J Crop Breed. 15(46), 62-72. doi:10.61186/jcb.15.46.62
URL: http://jcb.sanru.ac.ir/article-1-1406-fa.html
حبیبی درونکلایی میلاد، بابایی زاد ولی اله، تاجیک قنبری محمد علی، رحیمیان حشمت اله، دهستانی علی. بررسی اثر فسفیت پتاسیم در القای بیان برخی ژن های مقاومت در برنج در پیرو آلودگی با عامل بیماری شیت بلایت Rhizoctinia solani پژوهشنامه اصلاح گیاهان زراعی 1402; 15 (46) :72-62 10.61186/jcb.15.46.62

URL: http://jcb.sanru.ac.ir/article-1-1406-fa.html


دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (1034 مشاهده)
چکیده مبسوط
مقدمه و هدف: برنج (Oryza sativa L.) یکی از مهم­ترین غلات می باشد که دارای ارزش غذایی بالایی بوده و در اکثر کشور­ها یکی از اصلی­ ترین اجزا در سبد غذایی مردم است. سوختگی غلاف برنج یکی از مهم­ترین بیماری­ های برنج بوده و عامل آن نیز پاتوژن Rhizoctonia solani (Teleomorph:Thanatephorus cucumeris) می باشد. القای بیان ژن­  های مرتبط با مقاومت یکی از کم هزینه ­ترین و امن ­ترین روش ­ها در مدیریت بیماری­ های گیاهی محسوب شده و عوامل زیستی و غیر زیستی مختلفی در افزایش بیان این ژن ­ها در گیاهان ایفای نقش می کنند. فسفیت ­ها از جمله ترکیبات شیمیایی هستند که باعث القای مقاومت شده و قادر به کنترل بیماری­ ها با اثر مستقیم بر پاتوژن و غیر­مستقیم با تحریک پاسخ­ های دفاعی میزبان می­ شوند. در این تحقیق، اثرات کاربرد فسفیت­ پتاسیم بر میزان بیان برخی از ژن­ های مقاومت در دو رقم طارم (مقام) و خزر (حساس) آلوده شده با R. solani بررسی شد.
مواد و روش: پژوهش به‌صورت فاکتوریل در قالب طرح کاملا تصادفی در دو رقم طارم (مقاوم) و خزر (حساس) و دو تیمار فسفیت پتاسیم و قارچ R. solani انجام گردید. برگ­ های تیمار شده با فسفیت پتاسیم و شاهد به قارچ عامل بیماری­ آلوده و در زمان­ های 0، 24، 48، 72 و 96 ساعت بعد از آلودگی، نمونه برداری شدند. پس از استخراج RNA و ساخت cDNA، واکنش Real-time PCR جهت بررسی الگوی بیان با استفاده از آغازگر­های اختصاصی ژن­ ها PAL، LOX، PR1، PR3 و PR5، برگ­ های انجام گردید.
یافته­ ها: در این مطالعه افزایش معنی­ داری در میزان بیان ژن ­های PAL و LOX در ساعت 24 و ژن­ های PR1، PR3 و PR5 در ساعت 48 تیمار­ها نسبت به شاهد مشاهده شد. اثرات تیمار­ها در تمامی صفات در میزان بیان ژن ­های LOX، PR1، PR3 و PR5 معنی­ دار بوده ولی در میزان بیان ژن PAL اثرات تیمار­ها در صفت­ های تیمار-رقم و تیمار-رقم-زمان غیر معنی­ دار ولی در صفات دیگر معنی­ دار بود. بین رقم مقاوم (طارم) و رقم حساس (خزر) به جز ژن PR1 در مابقی ژن­ ها مقایسه میانگین معنی ­دار بود و بین تیمارها تمامی پنچ ژن دارای مقایسه میانگین معنی­ دار وجود داشت.
نتیجه­ گیری: یافته­ ها نشان ­دهنده این است که فسفیت پتاسیم باعث پاسخ سریع و شدید گیاه در برابر بیمارگر R. solani از طریق القای ژن­ های مختلف شده و به دنبال آن منجر به افزایش تحمل گیاه می شود. در رقم طارم به ­دلیل این که ژن­ های بررسی شده زودتر و بیشتر بیان شدند دارای مقاومت بیشتری نسبت به رقم خزر است.
متن کامل [PDF 2861 kb]   (367 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بيوتكنولوژي گياهي
دریافت: 1401/5/30 | ویرایش نهایی: 1402/6/21 | پذیرش: 1401/9/19 | انتشار: 1402/6/21

فهرست منابع
1. Achary, V.M., M.B. Ram, M. Manna, D. Datta, A. Bhatt, M.K Reddy and P.K. Agrawal. 2017. Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal, 15(12): 1493-1508. [DOI:10.1111/pbi.12803]
2. Anil Kumar, S., P. Hima Kumari, G. Shravan Kumar, C. Mohanalatha and P. Kavi Kishor. 2015. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Frontiers in Plant Science, 6: 163. [DOI:10.3389/fpls.2015.00163]
3. Antoniw, J.F., C.E. Ritter, W.S. Pierpoint and L.C. Van Loon. 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. Journal of General Virology, 47(1): 79-87. [DOI:10.1099/0022-1317-47-1-79]
4. Breiteneder, H. 2004. Thaumatin‐like proteins-a new family of pollen and fruit allergens Allergy, [DOI:10.1046/j.1398-9995.2003.00421.x]
5. 59(5): 479-481.
6. Costa, B.H.G., de Resende, M.L.V., Monteiro, A.C.A., Ribeiro Júnior, P.M., Botelho, D.M.D.S., and B.M.D. Silva. 2018. Potassium phosphites in the protection of common bean plants against anthracnose and biochemical defence responses. Journal of Phytopathology, 166(2): 95-102. [DOI:10.1111/jph.12665]
7. Dai, L., D. Wang, X. Xie, C. Zhang, X. Wang, Y. Xu, Y. Wang and J. Zhang. 2016. The Novel Gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Frontiers in plant science, 7:695. [DOI:10.3389/fpls.2016.00695]
8. Punja, Z.K. 2004. Genetic engine ering of plants to enhance resistance to fungal pathogens. Fungal Disease Resistance in Plants, 207-258. [DOI:10.1201/9780367806729]
9. Debnath, B., M. Irshad, S. Mitra, M. Li, H.M. Rizwan, S. Liu, T.Pan and D. Qiu. 2018. Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato. International Journal of Environmental Research, 12(2): 203-214. [DOI:10.1007/s41742-018-0084-0]
10. Deliopoulos, T., P.S Kettlewell and M.C Hare. 2010. Fungal disease suppression by inorganic salts: a review. Crop Protection, 29(10): 1059-1075. [DOI:10.1016/j.cropro.2010.05.011]
11. Derakhshan, A., M. Salari, V. Babaeizad, N. Panjehkeh and A. Taheri. 2021. Study of Biochemical and Molecular Changes of Iranian Rice Cultivars in Interaction with Bacterial Pathogen Xanthomonas oryzae pv. oryzae Causes Leaf Blight Disease. Journal Plant Crop Breeding, 12(36): 77-88. [DOI:10.52547/jcb.12.36.77]
12. Edreva, A. 2005. Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol, 31(1-2): 105-24.
13. Eshraghi, L.E., J. Anderson, N. Aryamanesh, B. Shearer, J. McComb, G.S. Hardy and P. A.O'Brien. 2011. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6): 1086-1095. [DOI:10.1111/j.1365-3059.2011.02471.x]
14. Feussner, I. and C. Wasternack. 2002. The lipoxygenase pathway. Annual Review of Plant Biology, 53: 275. [DOI:10.1146/annurev.arplant.53.100301.135248]
15. Forouzanfar, M.H., A. Afshin, L.T. Alexander, H.R. Anderson, Z.A. Bhutta, S. Biryukov and
16. J.J Carrero. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the global burden of disease Study 2015. The Lancet, 388(10053): 1659-1724. [DOI:10.1016/S0140-6736(16)31679-8]
17. Gao, G., S. Zhang, C. Wang, X. Yang, Y. Wang, X. Su, J. Du and C. Yang. 2011. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling. PLoS One, 6(4);19406. [DOI:10.1371/journal.pone.0019406]
18. Ghosh, P., S. Sen, J.Chakraborty and S. Das. 2016. Monitoring the efficacy of mutated Allium sativum leaf lectin in transgenic rice against Rhizoctonia solani. BMC Biotechnology, 16(1): [DOI:10.1186/s12896-016-0246-0]
19. Goellner, K and U. Conrath. 2007. Priming: it's all the world to induced disease resistance. In Sustainable Disease Management in a European Context, 121: 233-242. [DOI:10.1007/s10658-007-9251-4]
20. Gómez-Casado, C., A. Murua-García, M. Garrido-Arandia, P. González-Melendi, R. Sánchez-Monge, D. Barber and A. Díaz-Perales. 2014. Alt a 1 from Alternaria interacts with PR5 thaumatin-like proteins. FEBS letters, 588(9): 1501-1508. [DOI:10.1016/j.febslet.2014.02.044]
21. González, M., N. Brito and C. González. 2017. The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5‐family protein osmotin and protects the fungus against its antifungal activity. New Phytologist, 215(1): 397-410. [DOI:10.1111/nph.14588]
22. Hao, Z.N., L.P. Wang and R.X. Tao. 2009. Expression patterns of defence genes and antioxidant defence responses in a rice variety that is resistant to leaf blast but susceptible to neck blast. Physiological and Molecular Plant Pathology, 74(2): 167-174. [DOI:10.1016/j.pmpp.2009.11.003]
23. Hou, L., C. Gao, Y. Che, F. Zhao and X. Liu. 2012. Gene cloning and expression analysis of pathogenesis-related protein 1 in Vitis vinifera. Plant Physiology Communications, 48(1): 57-62.
24. Hu, X. and A.S.N. Reddy. 1997. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Molecular Biology, 34(6): [DOI:10.1023/A:1005893119263]
25. Kim, H.K., Y.H. Choi and R.Verpoorte. 2010. NMR-based metabolomic analysis of plants. Nature Protocols, 5(3): 536-549. [DOI:10.1038/nprot.2009.237]
26. Kromann, P., W.G. Pérez, A. Taipe, E. Schulte-Geldermann, B.P. Sharma, J.L. Andrade-Piedra and G.A. Forbes. 2012. Use of phosphonate to manage foliar potato late blight in developing countries. Plant Disease, 96(7): 1008-1015. [DOI:10.1094/PDIS-12-11-1029-RE]
27. Lee, S., H.J. Lee, J.H. Jung and C.M. Park. 2015. The Arabidopsis thaliana RNA‐binding protein FCA regulates thermotolerance by modulating the detoxification of reactive oxygen species. New Phytologist, 205(2): 555-569. [DOI:10.1111/nph.13079]
28. Li, Z.T., S.A. Dhekney and D.J. Gray. 2011. PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Reports, 30(1): 1-11. [DOI:10.1007/s00299-010-0934-5]
29. Lim, S., T. Borza, R.D. Peters, R.H. Coffin, K.I. Al-Mughrabi, D.M. Pinto and G. Wang-Pruski. 2013. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. Journal of Proteomics, 93: 207-223. [DOI:10.1016/j.jprot.2013.03.010]
30. Liu, Y., L. Wang, G. Cai, S. Jiang, L. Sun and D. Li. 2013. Response of tobacco to the Pseudomonas syringae pv. tomato DC3000 is mainly dependent on salicylic acid signaling pathway. FEMS Microbiology Letters, 344(1): 77-85. [DOI:10.1111/1574-6968.12157]
31. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
32. Lobato, M.C., M.F. Machinandiarena, C. Tambascio, G.A. Dosio, D.O Caldiz, G.R. Daleo, and F.P. Olivieri. 2011. Effect of foliar applications of phosphite on post-harvest potato tubers. European Journal of Plant Pathology, 130(2): 155-163. [DOI:10.1007/s10658-011-9741-2]
33. Lobato, M.C., F.P. Olivieri, G.R. Daleo and A. Andreu. B. 2010. Antimicrobial activity of phosphites against different potato pathogens. Journal of Plant Diseases and Protection, 117(3): 102-109. [DOI:10.1007/BF03356343]
34. Mahdian, S., A. Alian, A. Shahsavari, 2010. Study on the Reaction of Aeluropus littoralis Parl. To Rice Important Pathogenic Fungi in Mazandaran Provice. Journal of Crop Breeding, 2(5):68-77
35. (in Persian).
36. Mizutani, M., T. Naganuma, K.I. Tsutsumi and Y. Saitoh. 2010. The syncytium-specific expression of the Orysa; KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. Journal of Experimental Botany, 61(3): 791-798. [DOI:10.1093/jxb/erp343]
37. Mofidnakhaei, M., V. Abdossi, A. Dehestani, H. Pirdashti and V. Babaeizad. 2016. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Archives of Phytopathology and Plant Protection, 49(9-10): 207-221. [DOI:10.1080/03235408.2016.1180924]
38. Mohammadi, M.A., Z. Zhang, Y. Xi, H. Han, F. Lan, B. Zhang and G. Wang-Pruski. 2019. Effects of Potassium Phosphite on biochemical contents and enzymatic activities of Chinese potatoes inoculated by Phytophthora infestans. Applied Ecology and Environmental Research, 17(2): [DOI:10.15666/aeer/1702_44994514]
39. Ogoshi, A. 1987. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annual Review of Phytopathology, 25(1): 125-143. [DOI:10.1146/annurev.py.25.090187.001013]
40. Olivieri, F.P., M.L. Feldman, M.F. Machinandiarena, M.C. Lobato, D.O. Caldiz, R.G. Daleo and A.B. Andreu. 2012. Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Protection, 32: 1-6. [DOI:10.1016/j.cropro.2011.08.025]
41. Palacín, A., L.A. Rivas, C. Gómez-Casado, J. Aguirre, L. Tordesillas, J. Bartra and
42. A. Díaz-Perales. 2012. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray. Plpos One, 7(9): 44088. [DOI:10.1371/journal.pone.0044088]
43. Pan, X.B., M.C. Rush, X.Y. Sha, Q.J. Xie, S.D. Linscombe, S.R. Stetina and J.H. Oard. 1999. Major gene, nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing. Crop Science, 39(2): 338-346. [DOI:10.2135/cropsci1999.0011183X003900020006x]
44. Park, D.S., R.J. Sayler, Y.G. Hong, M.H. Nam and Y. Yang. 2008. A method for inoculation and evaluation of rice sheath blight disease. Plant Disease, 92(1): 25-29. [DOI:10.1094/PDIS-92-1-0025]
45. Punja, Z. K. 2004. Genetic engineering of plants to enhance resistance to fungal pathogens. Fungal Disease Resistance in Plants: 207-258. [DOI:10.1201/9781420093407]
46. Ramezani, M., F. Ramezani, F. Rahmani and A. Dehestani. 2018. Exogenous potassium phosphite application improved PR-protein expression and associated physio-biochemical events in cucumber challenged by Pseudoperonospora cubensis. Scientia Horticulturae, 234: 335-343. [DOI:10.1016/j.scienta.2018.02.042]
47. Sayari, M., V. Babaeizad, M.A.T. Ghanbari and H. Rahimian. 2014. Expression of the pathogenesis related proteins, NH-1, PAL, and lipoxygenase in the iranian Tarom and Khazar rice cultivars, in reaction to Rhizoctonia solani-the causal agent of rice sheath blight. Journal of Plant Protection Research, 54(1): 36-43. [DOI:10.2478/jppr-2014-0006]
48. Silva, O. C., H.A.A. Santos, M. Dalla Pria and L.L. May-De Mio. 2011. Potassium phosphite for control of downy mildew of soybean. Crop Protection, 30(6): 598-604. [DOI:10.1016/j.cropro.2011.02.015]
49. Singh, N.K., A.K. Handa, P.M. Hasegawa and R.A. Bressan. 1985. Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiology, 79(1): 126-137. [DOI:10.1104/pp.79.1.126]
50. Singh, P., P. Mazumdar, J.A. Harikrishna and S. Babu. 2019. Sheath blight of rice: a review and identification of priorities for future research. Planta, 250(5): 1387-1407. [DOI:10.1007/s00425-019-03246-8]
51. Song, A., G. Xue, P. Cui, F. Fan, H. Liu, C. Yin and Y. Liang. 2016. The role of silicon in enhancing resistance to bacterial blight of hydroponic-and soil-cultured rice. Scientific Reports, 6(1): 1-13. [DOI:10.1038/srep24640]
52. Taheri, P. and M. Hofte. 2007. Riboflavin-induced resistance against rice sheath blight functions through the potentiation of lignin formation and jasmonic acid signalling pathway. Communications in Agricultural and applied Biological Sciences, 72(2): 309-313.
53. Taheri, P. and S. Tarighi,. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167(3): 201-208. [DOI:10.1016/j.jplph.2009.08.003]
54. Turner, J.G., C. Ellis and A. Devoto. 2002. The jasmonate signal pathway. The Plant Cell, 14(1): 153-164. [DOI:10.1105/tpc.000679]
55. Van Loon, L.C. and E.A.Van Strien. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55(2): 85-97. [DOI:10.1006/pmpp.1999.0213]
56. Velazhahan, R. and S. Muthukrishnan. 2003. Transgenic tobacco plants constitutively overexpressing a rice thaumatin-like protein (PR-5) show enhanced resistance to Alternaria alternata. Biologia Plantarum, 47(3): 347-354. [DOI:10.1023/B:BIOP.0000023876.55053.5e]
57. Vellosillo, T., M. Martínez, M.A. López, J. Vicente, T. Cascón, L. Dolanand C. Castresana, . 2007. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. The Plant Cell, 19(3): 831-846. [DOI:10.1105/tpc.106.046052]
58. Verma, DK. and P.P. Srivastav. 2020. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends in Food Science and Technology, 97: 355-365. [DOI:10.1016/j.tifs.2020.01.007]
59. Vinas, M., J.C. Mendez and V.M. Jiménez. 2020. Effect of foliar applications of phosphites on growth, nutritional status and defense responses in tomato plants. Scientia Horticulturae, 265:109-200. [DOI:10.1016/j.scienta.2020.109200]
60. Waewthongrak, W., S. Pisuchpen and W. Leelasuphakul. 2015. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology, 99: 44-49. [DOI:10.1016/j.postharvbio.2014.07.016]
61. Wiesel, L., A.C. Newton, I. Elliott, D. Booty, E.M. Gilroy, P.R. Birch and I. Hein. 2014. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5: 655. [DOI:10.3389/fpls.2014.00655]
62. Xu, R., J. Zhou, E. Zheng, Y. Yang, D. Li, Y. Chen and X. Wang. 2021. Systemic acquired resistance plays a major role in bacterial blight resistance in a progeny of somatic hybrids of cultivated rice (Oryza sativa L.) and wild rice (Oryza meyeriana L.). Journal of Plant Diseases and Protection, 128(4): 1023-1040. [DOI:10.1007/s41348-021-00457-8]
63. Yan, H., Y. Zhong, B. Jiang, B. Zhou, B.Wu and G. Zhong. 2017. Guanggan (Citrus reticulata) shows strong resistance to Phytophthora nicotianae. Scientia Horticulturae, 225: 141-149. [DOI:10.1016/j.scienta.2017.06.068]
64. Zhang, J., L. Chen, , C. Fu, L. Wang, H. Liu, Y. Cheng and A. Zheng. 2017. Comparative transcriptome analyses of gene expression changes triggered by Rhizoctonia solani AG1 IA infection in resistant and susceptible rice varieties. Frontiers in Plant Science, 8: 14-22. [DOI:10.3389/fpls.2017.01422]
65. Zhang, Y., Gao, Y., Liang, Y., Dong, Y., X. Yang and D. Qiu. 2019. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection. Journal of Experimental Botany, 70(2): 613-626. [DOI:10.1093/jxb/ery351]
66. Zhao, C.J., A.R. Wang, Y.J. Shi, L.Q. Wang, W.D. Liu, Z.H. Wang and G.D. Lu. 2008. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. Theoretical and Applied Genetics, 116(4): 501-516. [DOI:10.1007/s00122-007-0686-y]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by : Yektaweb