دوره 15، شماره 45 - ( بهار 1402 )                   جلد 15 شماره 45 صفحات 104-83 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران
چکیده:   (1354 مشاهده)
چکیده مبسوط
مقدمه و هدف: تنش ­های محیطی از قبیل تنش خشکی، شوری، سرما و گرما به ­عنوان یکی از پیامدهای تغییر اقلیم از عوامل عمده کاهش در محصولات کشاورزی هستند. بررسی­ بیان ژن­ ها (مطالعات ترنسکریپتومیک) نقش اساسی در درک سازوکار گیاهان در مقابله با تنش­ های محیطی دارند. بیان ژن فرآیندی است که طی آن اطلاعات رمزگذاری شده در ژن به‌صورت رونوشت (Transcript) تهیه می ­شود که غالب اوقات خود رونوشت یا محصول پروتئینی آن در فرایندها و مکانیسم­های مختلف مولکولی در سلول و نهایتاً حیات ارگانیسم درگیر می شود. ارزیابی سطح بیان ژن گام مهمی در جهت روشن نمودن عملکردهای ژنی به لحاظ زمانی و مکانی است.
مواد و روش­ ها: مقاله حاضر یک مقاله مروری می­ باشد که به شیوه تحلیل محتوا (Content analysis) با جستجوی کلید واژه­های تجزیه ترنسکریپتوم، توالی­یابی آر­ان­ای، هیبریداسیون کاهشی بازدارنده، ریزآرایه، واکنش زنجیره­ای پلی­مراز در مقاله­های مرتبط در پایگاه­های اینترنتیGoogle Scholar ،Web of Science ،PubMed و Scopus بدست آمده است.
یافته­ ها: دهه­ ها پیش، مطالعات بر روی ژن‌ها به‌صورت محدود و عمدتاً به روش­ هایی از قبیل نوردرن بلات، وسترن بلات، هیبریداسیون ریزآرایه، هیبریداسیون کاهشی (Subtractive hybridization)، هیبریداسیون حذفی کاهشی (Suppression subtractive hybridization)، واکنش زنجیره­ای پلی­مراز در زمان واقعی (Real time polymerase chain reaction) متمرکز بود، در حالی که اکنون محققان قادر به بررسی یک­باره ژنوم از طریق روش ­های مبتنی بر توالی­ یابی (Sequencing based approaches) شامل روش توالی­ یابی RNA هستند. ارتقاء سطح توانمندی به معرفی رویکردهای سیستم بیولوژی کمک می­کند که به موجب آن شبکه­ های عملکردی سلول را می­ توان در تمامیت آنها موشکافی کرد تا اجزای بالقوه فعل و انفعالات عملکردی روشن شود. ظهور زیست­ شناسی سیستم ­ها همراه با پیشرفت ­های شگرف در فناوری­ امکان شناسایی سریع همه رونوشت­ های RNA موجود در نمونه ­های بیولوژیکی مورد مطالعه را فراهم می ­نمایند. با این وجود، فناوری­ های قبلی که محدود به بررسی ژن­ های منفرد یا زیرمجموعه ­ای از ژن ­­ها بودند، هنوز جایگاه خود را در آزمایشگاه ­های تحقیقاتی حفظ کرده ­اند.
نتیجه­ گیری: هدف در اینجا تشریح انواع روش ­های مورد استفاده در تجزیه و تحلیل بیان ژن در پاسخ گیاهان به تنش ­های زنده و غیرزنده است. انتخاب روش و یا استراتژی مورد استفاده بسته به سطح فناوری، هزینه اجرا و محدودیت روش ­ها انجام می­ شود. هنگام انتخاب روشی برای یک تحقیق خاص، باید در نظر داشت که محدودیت ­ها از نظر روش شناختی یا آماری به حداقل برسند تا نتایج قابل اعتماد و تکرارپذیر حاصل شود.

 
متن کامل [PDF 3870 kb]   (675 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات مولكولي
دریافت: 1401/1/28 | ویرایش نهایی: 1402/3/21 | پذیرش: 1401/5/11 | انتشار: 1402/3/21

فهرست منابع
1. Adams, M.D., J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos, H. Xiao and R.F. Moreno. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252(5013): 1651-1656. [DOI:10.1126/science.2047873]
2. Ahmed, F.E. 2002. Molecular techniques for studying gene expression in carcinogenesis. Journal of Environmental Science and Health, 20(2): 77-116. [DOI:10.1081/GNC-120016201]
3. Alwine, J.C., D.J. Kemp and G.R. Stark. 1977. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proceedings of the National Academy of Sciences, 74(12): 5350-5354. [DOI:10.1073/pnas.74.12.5350]
4. Andersen, C.L., J.L. Jensen and T.F. Ørntoft. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15): 5245-5250. [DOI:10.1158/0008-5472.CAN-04-0496]
5. Arya, M., I.S. Shergill, M. Williamson, L. Gommersall, N. Arya and H.R. Patel. 2005. Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics, 5(2): 209-219. [DOI:10.1586/14737159.5.2.209]
6. Azrolan, N and J.L. Breslow. 1990. A solution hybridization/RNase protection assay with riboprobes to determine absolute levels of apoB, AI, and E mRNA in human hepatoma cell lines. Journal of Lipid Research, 31(6): 1141-1146. [DOI:10.1016/S0022-2275(20)42754-3]
7. Bachem, C.W., R.S. Van Der Hoeven, S.M. De Bruijn, D. Vreugdenhil, M. Zabeau and R.G. Visser. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 9(5): 745-753. [DOI:10.1046/j.1365-313X.1996.9050745.x]
8. Balandin, T. and C. Castresana. 2002. AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiology, 129(4): 1852-1857. [DOI:10.1104/pp.010963]
9. Bartlett, J.M. 2000. RNase protection assay analysis of mRNA for TGFβ1-3 in ovarian tumors. Methods Mol Med, 39: 431-7. doi: 10.1385/1-59259-071-3:431. [DOI:10.1385/1-59259-071-3:431]
10. Bowler, L.D., M. Hubank and B.G. Spratt. 1999. Representational difference analysis of cDNA for the detection of differential gene expression in bacteria: development using a model of iron-regulated gene expression in Neisseria meningitidis. Microbiology, 145(12): 3529-3537. [DOI:10.1099/00221287-145-12-3529]
11. Bozkurt, O., T. Unver and M.S. Akkaya. 2007. Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol. Mol. Plant Pathology, 71(4-6): 251-259. [DOI:10.1016/j.pmpp.2008.03.002]
12. Casassola, A., S.P. Brammer, M.S. Chaves, J.A. Martinelli, M.F. Grando and N.D. Denardin. 2013. Gene expression: a review on methods for the study of defense-related gene differential expression in plants. American Journal of Plant Sciences, 4(12C): 64-73. [DOI:10.4236/ajps.2013.412A3008]
13. Costa, V., C. Angelini, I. De Feis and A. Ciccodicola. 2010. Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology, 2010, Article ID 853916. [DOI:10.1155/2010/853916]
14. Darvishzadeh, R., T. Hewezi, L. Gentzbittel and A. Sarrafi. 2008. Differential expression of defence-related genes between compatible and partially compatible sunflower-Phoma macdonaldii interactions. Crop Protection, 27(3-5): 740-746. [DOI:10.1016/j.cropro.2007.09.017]
15. Datson, N.A., J. Vander Perk-de Jong, M.P. Van den Berg, E.R. De Kloet and E. Vreugdenhil. 1999. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Resaerch, 27(5): 1300-1307. [DOI:10.1093/nar/27.5.1300]
16. Davis, M.M., D.I. Cohen, E.A. Nielsen, M. Steinmetz, W.E. Paul and L. Hood. 1984. Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad alpha. Proceedings of the National Academy of Sciences, 81(7): 2194-2198. [DOI:10.1073/pnas.81.7.2194]
17. Diatchenko, L., Y.F. Lau, A.P. Campbell, A. Chenchik, F. Moqadam, B. Huang and P.D. Siebert. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences, 93(12): 6025-6030. [DOI:10.1073/pnas.93.12.6025]
18. Eisen, M.B., P.T. Spellman, P.O. Brown and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25): 14863-14868. [DOI:10.1073/pnas.95.25.14863]
19. Espy, M.J., J.R. Uhl, L.M. Sloan, S.P. Buckwalter, M.F. Jones, E.A. Vetter and T.F. Smith. 2006. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clinical Microbiology Reviews, 19(1): 165-256. [DOI:10.1128/CMR.19.1.165-256.2006]
20. Fernández, A.I., C. Óvilo, A. Fernández, C. Barragán, M.A. Toro, C. Rodríguez and L. Silió. 2008. Luces y sombras del análisis de expresión génica utilizando microarrays. Un Ejemplo en Cerdo Ibérico. ITEA, 104(2): 99-105.
21. Gholamnezhad, J., F. Sanjarian, E. Mohammadi Goltapeh, N. Safaei and K.h. Razavi. 2016. Study of changesgraminicola on wheat. 2th International and 14th Iranian Genetics Congress, Tehran, Iran.
22. Goswami, R.S., J.R. Xu, F. Trail, K. Hilburn and H.C. Kistler. 2006. Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Microbiology, 152(6): 1877-1890. [DOI:10.1099/mic.0.28750-0]
23. Guigo, R., P. Agarwal, J.F. Abril, M. Burset and J.W. Fickett. 2000. An assessment of gene prediction accuracy in large DNA sequences. Genome Resaerch, 10(10: 1631-1642. [DOI:10.1101/gr.122800]
24. Guo, K., X. Du, L. Tu and W. Tang, M. Pengcheng, Wang, Z. Liu and X. Zhang. 2016. GhUB7-Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). Journal of Experimental Botany, 67: 3289-3301. [DOI:10.1093/jxb/erw146]
25. Hanriot, L., C. Keime, N. Gay, C. Faure, C. Dossat, P. Wincker and O. Gandrillon. 2008. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics, 9(1): 1-9. [DOI:10.1186/1471-2164-9-418]
26. Higuchi, R., G. Dollinger, P.S. Walsh and R. Griffith. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 10(4): 413-417. [DOI:10.1038/nbt0492-413]
27. Hoopes, L. 2008. Introduction to the gene expression and regulation topic room. Nature Education, 1(1): 160.
28. Howard, B. E., Q. Hu, A.C. Babaoglu, M. Chandra, M. Borghi, X. Tan and S. Heber. 2013. High-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variants. PLoS One, 8(10): e74183. [DOI:10.1371/journal.pone.0074183]
29. Huang, Q., Z. Mao, S. Li, J. Hu and Y. Zhu. 2014. A non-radioactive method for small RNA detection by northern blotting. Rice 7(1): 1-7. [DOI:10.1186/s12284-014-0026-1]
30. Ilyin, S.E., D. Gayle and C.R. Plata-Salamán. 1998. Modifications of RNase protection assay for neuroscience applications. Journal of Neuroscience Methods, 84(1-2): 139-141. [DOI:10.1016/S0165-0270(98)00108-3]
31. Jamshidi, E., M. Parvini Kohneh Shahri and R. Darvishzadeh. 2019. Transcript analysis of telomerase enzyme gene in sunflower infected by sclerotinia stem rot disease. Journal of Plant Molecular Breeding, 7(1): 31-36.
32. Janzen, M.A., D.L. Kuhlers, S.B. Jungst and C.F. Louis. 2000. ARPP-16 mRNA is up-regulated in the longissimus muscle of pigs possessing an elevated growth rate. Journal of Animal Science, 78(6): 1475-1484. [DOI:10.2527/2000.7861475x]
33. Josefsen, K. and H. Nielsen. 2011. Northern blotting analysis. Methods Mol Biol,703: 87-105. doi: 10.1007/978-1-59745-248-9_7. [DOI:10.1007/978-1-59745-248-9_7]
34. Junk, D.J and G.S. Mourad. 2002. Isolation and expression analysis of the isopropylmalate synthase gene family of Arabidopsis thaliana. Journal of Experimental Botany, 53(379): 2453-2454. [DOI:10.1093/jxb/erf112]
35. Kessler, H.H. 2014. Molecular diagnostics of infectious diseases. Published by De Gruyter 2014. https://doi.org/10.1515/9783110328127 [DOI:10.1515/9783110328127.]
36. Kim, J.G., K. Back, H.Y. Lee, H.J. Lee, T.H. Phung, B. Grimm and S. Jung. 2014. Increased expression of Fe-chelatase leads to increased metabolic flux into heme and confers protection against photodynamically induced oxidative stress. Plant Molecular Biology, 86(3): 271-287. [DOI:10.1007/s11103-014-0228-3]
37. Kong, L., J.M. Anderson and H.W. Ohm. 2005. Induction of wheat defense and stress-related genes in response to Fusarium graminearum. Genome, 48(1): 29-40. [DOI:10.1139/g04-097]
38. Krumlauf, R. 1994. Analysis of gene expression by northern blot. Molecular Biotechnology, 2(3): 227-242. [DOI:10.1007/BF02745879]
39. Kuang, W.W., D.A. Thompson, R.V. Hoch and R.J. Weigel. 1998. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids Research, 26(4); 1116-1123. [DOI:10.1093/nar/26.4.1116]
40. Liang, P. and A.B. Pardee. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257(5072): 967-971. [DOI:10.1126/science.1354393]
41. Lin, S.M. and K.F. Johnson. (Eds.) 2002. Methods of microarray data analysis: papers from CAMDA'00. Boston: Kluwer Academic Publishers. [DOI:10.1007/978-1-4615-0873-1]
42. Lisitsyn, N and M. Wigler. 1993. Cloning the differences between two complex genomes. Science, 259(5097): 946-951. [DOI:10.1126/science.8438152]
43. Liu, L., Y. Li, S. Li, N. Hu, Y. He, R. Pong and M. Law. 2012. Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology 2012. [DOI:10.1155/2012/251364]
44. Lu, T., G. Lu, D. Fan, C. Zhu, W. Li, Q. Zhao and B. Han. 2010. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9): 1238-1249. [DOI:10.1101/gr.106120.110]
45. Ma, J., X. Huang, X. Wang, X. Chen, Z. Qu, L. Huang and Z. Kang. 2009. Identification of expressed genes during compatible interaction between stripe rust (Puccinia striiformis) and wheat using a cDNA library. BMC Genomics, 10(1): 586. [DOI:10.1186/1471-2164-10-586]
46. Ma, Y.J., G.A. Dissen, S.R. Rage and Ojeda. 1996. RNase protection assay. Methods, 10(3): 273-278. [DOI:10.1006/meth.1996.0102]
47. Makkouk, K.M and S.G. Kumari. 2006. Molecular diagnosis of plant viruses. Arab Jornal of Plant Protection, 24(2): 135-138.
48. Mallona, González, I. 2008. Selección de genes de normalización para RT-PCR cuantitativa en Petunia hybrida. Ciencia y Tecnología Agraria, Izaskun Mallona González Press.
49. Malone, G., P.D. Zimmer, G.E. Meneghello, E. Binneck and S.T. Peske. 2006. Prospecção de Genes em Bibliotecas de cDNA. Current Agricultural Science and Technology, 12(1).
50. Mantione, K.J., R.M. Kream, H. Kuzelova, R. Ptacek, J. Raboch, M. Samuel and G.B. Stefano. 2014. Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq. Medical Science Monitor Basic Research, 20: 138. [DOI:10.12659/MSMBR.892101]
51. McGrann, G.R., L.D. Martin, C.S. Kingsnorth, M.J. Asher, M.J. Adams and E.S. Mutasa-Göttgens. 2007. Screening for genetic elements involved in the nonhost response of sugar beet to the plasmodiophorid cereal root parasite Polymyxa graminis by representational difference analysis. J Gen Plant Pathol, 73(4): 260-265. [DOI:10.1007/s10327-007-0024-x]
52. Mehta, A. and Y.B. Rosato. 2005. Identification of differentially expressed genes of Xanthomonas axonopodis pv. citri by representational difference analysis of cDNA. Genetics and Molecular Biology, 28(1): 140-149. [DOI:10.1590/S1415-47572005000100024]
53. Meisinger, C and C. Grothe. 1996. A sensitive RNase protection assay using 33 P labeled antisense riboprobes. Molecular Biotechnology, 5(3): 289-291. [DOI:10.1007/BF02900368]
54. Mizuno, H., H. Kawahigashi, Y. Kawahara, H. Kanamori, J. Ogata, H. Minami and T. Matsumoto. 2012. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicola interaction. BMC Plant Biology, 12(1): 1-15. [DOI:10.1186/1471-2229-12-121]
55. Mohasseli, T., S. Dezhsetan, R. Darvishzadeh. 2022. Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes. Iranian Journal of Crop Sciences, 24(1): 79-92. (In Persian).
56. Mohasseli, T., R. Seyed Rahmani, R. Darvishzadeh, S. Dezhsetan and K. Marchal. 2022. Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress. Cereal Research Communications, 1-14. [DOI:10.1007/s42976-022-00271-4]
57. Monobe, M.M.D.S. and R.C.D. Silva. 2016. Gene expression: an overview of methods and applications for cancer research. Veterinaria e Zootecnia, 23(4): 532-546.
58. Moody, D.E. 2001. Genomics techniques: an overview of methods for the study of gene expression. Journal of Animal Science, 79(suppl_E), E128-E135. [DOI:10.2527/jas2001.79E-SupplE128x]
59. Moradbeygi, H., R. Jamei, R. Heidari, R. Darvishzadeh. 2020. Fe2O3 nanoparticles induced biochemical responses and expression of genes involved in rosmarinic acid biosynthesis pathway in Moldavian balm under salinity stress. Physiologia Plantarum, 169(4): 555-570. [DOI:10.1111/ppl.13077]
60. Morant, M., S. Bak, B.L. Møller and D. Werck-Reichhart. 2003. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Current Opinion in Biotechnology, 14(2): [DOI:10.1016/S0958-1669(03)00024-7]
61. Morrissy, A.S., R.D. Morin, A. Delaney, T. Zeng, H. McDonald, S. Jones and M.A. Marra. 2009. Next-generation tag sequencing for cancer gene expression profiling. Genome Research, 19(10): 1825-1835. [DOI:10.1101/gr.094482.109]
62. Moustafa, K. and J.M. Cross. 2016. Genetic approaches to study plant responses to environmental stresses: an overview. Biology, 5(2): 20. [DOI:10.3390/biology5020020]
63. Musa Khalifani, K.H., R. Darvishzadeh and M. Abrinbana. 2021. Resistance against Sclerotinia basal stem rot pathogens in sunflower. Tropical Plant Pathology, 46(6): 651-663. [DOI:10.1007/s40858-021-00463-z]
64. Nagalakshmi, U., K. Waern and M. Snyder. 2010. RNA‐Seq: a method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology, 89(1): 4-11. [DOI:10.1002/0471142727.mb0411s89]
65. Nagalakshmi, U., Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein and M. Snyder. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881): 1344-1349. [DOI:10.1126/science.1158441]
66. Nascimento, S., E.R. Suarez and M.A.S. Pinhal. 2010. Real time PCR and RT-PCR technology and its applications in the medicine field. Revista Brasileira de Medicina, 67: 7-19.
67. Newman, C.S and P.A. Krieg. 1999. Ribonuclease protection analysis of gene expression in Xenopus. Molecular Methods in Developmental Biology, 29-40. [DOI:10.1385/1-59259-678-9:29]
68. Oshlack, A., M.D. Robinson and M.D. Young. 2010. From RNA-seq reads to differential expression results. Genome Biology, 11(12): 1-10. [DOI:10.1186/gb-2010-11-12-220]
69. Parmigiani, G., E.S. Garrett, R.A. Irizarry and S.L. Zeger. 2003. The Analysis of Gene Expression Data: An Overview of Methods and Software. In: Parmigiani, G., Garrett, E.S., Irizarry, R.A., Zeger, S.L. (eds) The Analysis of Gene Expression Data. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-21679-0_1 [DOI:10.1007/0-387-21679-0_1.]
70. Qin, D., F. Wang, X. Geng, L. Zhang, Y. Yao, Z. Ni and Q. Sun. 2015. Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) Multiprotein Bridging Factor, confers heat tolerance in both yeast and rice. Plant Molecular Biology, 87(1-2): 31-45. [DOI:10.1007/s11103-014-0259-9]
71. Qu, Y. and M. Boutjdir. 2007. RNase protection assay for quantifying gene expression levels. In Cardiac Gene Expression (pp. 145-158). Humana Press. [DOI:10.1007/978-1-59745-030-0_8]
72. Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiology, 133(4): 1755-1767. [DOI:10.1104/pp.103.025742]
73. Rosenau. C., B. Kaboord and M.W. Qoronfleh. 2002. Development of a chemiluminescence-based ribonuclease protection assay. Biotechniques, 33(6): 1354-1358. [DOI:10.2144/02336pf02]
74. Saiki, R.K., S. Scharf. F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich and N. Arnheim. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732): 1350-1354. [DOI:10.1126/science.2999980]
75. Sambrook, J. and D.W. Russell. 2006. Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harb Protocols. 2006(1), pdb-prot3932. [DOI:10.1101/pdb.prot3932]
76. Sanami, S., M. Pazhouhandeh, R. Valizadeh Kamran and K. Azizpour. 2018. The effect of salt stress on the relative expression of CAT1 and ASX1 genes and some physiological traits in two varieties of tomato. Genetic Engineering and Biosafety Journal, 6 (2): 281-292.
77. Santos, C.A., D.V. Blanck, and P.D. de Freitas. 2014. RNA-seq as a powerful tool for penaeid shrimp genetic progress. Frontiers in Genetics, 5: 298. [DOI:10.3389/fgene.2014.00298]
78. Sargent, T.D and I. B. Dawid. 1983. Differential gene expression in the gastrula of Xenopus laevis. Science, 222(4620): 135-139. [DOI:10.1126/science.6688681]
79. Schena, M., D. Shalon, R.W. Davis and P.O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235): 467-470. [DOI:10.1126/science.270.5235.467]
80. Schenk, P.M., S.R. Thomas‐Hall, A.V. Nguyen, J.M. Manners, K. Kazan and G. Spangenberg. 2008. Identification of plant defence genes in canola using Arabidopsis cDNA microarrays. Plant Biology, 10(5): 539-547. [DOI:10.1111/j.1438-8677.2008.00056.x]
81. Sealfon, S.C., T.T. Chu. 2011. RNA and DNA microarrays. Methods Molecular Biology, 671: 3-34. [DOI:10.1007/978-1-59745-551-0_1]
82. Shahabzadeh, Z., R. Darvishzadeh, R. Mohammadi, M. Jafari. 2019. Isolation, characterization, and expression profiling of nucleoside diphosphate kinase gene from tall fescue (Festuca arundinaceous Schreb.) (FaNDPK) under salt stress. Plant Molecular Biology Reporter, 38 (2): 175-186. [DOI:10.1007/s11105-019-01183-0]
83. Sharifi Alishah, M., R. Darvishzadeh, M. Ahmadabadi, Y. Piri Kashtiban and K. Hasanpur. 2022. Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus L.) genotype by RNA sequencing. Molecular Biology Reports, 49(5):3583-3596. [DOI:10.1007/s11033-022-07198-3]
84. Soares, M.B., M.D.F. Bonaldo, P. Jelene, L. Su, L. Lawton and A. Efstratiadis. 1994. Construction and characterization of a normalized cDNA library. Proceedings of the National Academy of Sciences, 91(20): 9228-9232. [DOI:10.1073/pnas.91.20.9228]
85. Stalder, A.K., A. Pagenstecher, C.L. Kincaid and I.L. Campbell. 1999. Analysis of gene expression by multiprobe RNase protection assay. In: Neurodegeneration methods and protocols. (pp. 53-66). Humana Press. [DOI:10.1385/0-89603-612-X:53]
86. Sturtevant, J. 2000. Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clinical Microbiology Reviews, 13(3): 408-427. [DOI:10.1128/CMR.13.3.408]
87. Teymouri, M., M. Parvini Kohneh Shahri, R. Darvishzadeh. 2020. Salt-induced differences during the gene expression of telomerase enzyme in sunflower. Iranian Journal of Biotechnology, 19 (1): e2579.
88. Tharanathan, R.N and F.S. Kittur. 2003. Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr, 43(1): 61-87. [DOI:10.1080/10408690390826455]
89. Tremblay, A., P. Hosseini, N.W. Alkharouf, S. Li and B.F. Matthews. (2011). Gene expression in leaves of susceptible Glycine max during infection with Phakopsora pachyrhizi using next generation sequencing. Sequencing, 2011, Article ID 827250, https://doi.org/10.1155/2011/827250 [DOI:10.1155/2011/827250.]
90. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7): 1-12. [DOI:10.1186/gb-2002-3-7-research0034]
91. Velculescu, V.E., L. Zhang, B. Vogelstein and K.W. Kinzler. 1995. Serial analysis of gene expression. Science, 270(5235): 484-487. [DOI:10.1126/science.270.5235.484]
92. Wan, M and J. Wang. (2014). RNA sequencing and its applications in cancer diagnosis and targeted therapy. North American Journal of Medicine and Science, 7(4): 156-162.
93. Wang, X., W. Liu, X. Chen, C. Tang, Y. Dong, J. Ma and Z. Kang. 2010. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 10(1): 1-15. [DOI:10.1186/1471-2229-10-9]
94. Wang, Z., M. Gerstein and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1): 57-63. [DOI:10.1038/nrg2484]
95. Watson, J.D., T.A. Baker, S.P. Bell, A. Gann, M. Levine and R. Losick. 2014. Expression of the genome. Genetic. Molecular., 5: 343-74.
96. Watson, M.A and T.P. Fleming. 1994. Isolation of differentially expressed sequence tags from human breast cancer. Cancer Research, 54(17): 4598-4602.
97. Westermann, A.J., S.A. Gorski and J. Vogel. 2012. Dual RNA-seq of pathogen and host. Nature Reviews Microbiology, 10(9): 618-630. [DOI:10.1038/nrmicro2852]
98. Xue, T., X. Li, W. Zhu, C. Wu, G. Yang and C. Zheng. 2009. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany, 60(1): 339-349. [DOI:10.1093/jxb/ern291]
99. Ying, S.Y. 2004. Complementary DNA libraries. Molecular Biotechnology, 27(3): 245-252. [DOI:10.1385/MB:27:3:245]
100. Zhang, J., H. Yuan, Y. Yang, T. Fish, S.M. Lyi, T.W. Thannhauser and L. Li. 2016. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. Journal of Experimental Botany, 67(9): 2731-2744. [DOI:10.1093/jxb/erw106]
101. Zubo, Y.O., V.V. Kusnetsov, T. Börner and K. Liere. 2011. Reverse protection assay: a tool to analyze transcriptional rates from individual promoters. Plant Methods, 7(1): 1-13. [DOI:10.1186/1746-4811-7-47]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.