دوره 14، شماره 41 - ( بهار 1401 )                   جلد 14 شماره 41 صفحات 52-42 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arkan M, Mirakhorli N, Shabani L, Dababat A A. (2022). The Effect of Drought Stresses, Fusarium Culmorum and Heterodera Filipjevi and their Interactions on the Expression Pattern of Transcription Factor Gene NAC69-3 in Bread Wheat. J Crop Breed. 14(41), 42-52. doi:10.52547/jcb.14.41.42
URL: http://jcb.sanru.ac.ir/article-1-1312-fa.html
ارکان مژگان، میرآخورلی ندا، شبانی لیلا، دبابت عبدالفتاح عامر. تأثیر تنش های خشکی، قارچ Fusarium culmorum و نماتد Heterodera filipjevi و اثرات متقابل آنها بر الگوی بیان ژن فاکتور رونویسی NAC69-3 در گندم نان پژوهشنامه اصلاح گیاهان زراعی 1401; 14 (41) :52-42 10.52547/jcb.14.41.42

URL: http://jcb.sanru.ac.ir/article-1-1312-fa.html


1- گروه بیوتکنولوژی و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران
2- گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد، ایران.
3- مرکز بین المللی اصلاح ذرت و گندم (CIMMYT)، آنکارا، ترکیه.
چکیده:   (3945 مشاهده)
چکیده مبسوط
مقدمه و هدف: در شرایط مزرعه غلات دانه­ ریز از جمله گندم تحت تأثیر انواع عوامل محیطی مخرب نظیر تنش­های غیر­زیستی و زیستی قرار می ­گیرند که باعث  کاهش شدید در عملکرد محصول می ­شود. در مواجه گیاه با این شرایط، فاکتورهای رونویسی از طریق فعال یا سرکوب کردن بیان ژن­های درگیر در پاسخ­های مقاومتی سبب ایجاد مقاومت گیاه در برابر انواع تنش­ ها می­ شوند. هدف از مطالعه­ ی حاضر بررسی الگوی بیان ژن فاکتور رونویسی NAC69-3 در گیاه گندم در پاسخ به تنش های زیستی و غیر زیستی بود.
مواد و روش ­ها: جهت تعیین و انتخاب ژن­ های مرتبط با مقاومت در برابر انواع تنش­های زیستی و غیر­زیستی، داده ­های ریزآرایه­ ی Triticum aestivum در سایت  NCBI GEO بررسی و فاکتور رونویسی  NAC69-3برای تأیید آزمایشگاهی انتخاب گردید. به منظور بررسی الگوی بیان این ژن تنش­های خشکی، قارچ Fusarium culmorum و نماتد Heterodera filipjevi و ترکیبات دوتایی و سه ­تایی آنها به صورت طرح آزمایشی فاکتوریل در قالب طرح کاملا تصادفی در دو رقم گندمSBP-CL16  (مقاوم به قارچ) و Silverstar (مقاوم به نماتد) اعمال گردید و نمونه برداری در سه زمان 24 ساعت، 48 ساعت و 7 روز پس از اعمال تنش­ها از بافت ریشه­ بود. پس ازاستخراج RNA وساخت cDNA، واکنشReal-time PCR  جهت بررسی الگوی بیان با استفاده از آغازگرهای اختصاصی ژن NAC69-3 انجام شد.
یافته­ ها: دراین مطالعه افزایش معنی­ داری در میزان بیان نسبی ژنNAC69-3 ، در هر دو رقم گندم، در اکثر تیمارها نسبت به شاهد مشاهده شد. رقم مقاوم به قارچ (SBP-CL16) تحت تنش قارچ، افزایش بیان بیشتری نسبت به تنش نماتد نشان داد و در رقم مقاوم به نماتد (Silverstar) در تنش نماتد، افزایش بیان بیشتری مشاهده گردید. همچنین با اعمال همزمان تنش­ها، ژن NAC69-3 افزایش بیان بالاتری نسبت به اعمال هر تنش به صورت جداگانه داشت.
نتیجه گیری: فاکتورهای رونویسی NAC در اثر تنش­های چندگانه القا می ­شوند، انتظار می رود دستکاری ژن­های پاسخ­ دهنده به تنش چندگانه، ­بتواند فرصتی مناسب برای تولید گیاهانی متحمل به تنش­های چندگانه با بازده بالا ایجاد کند.
متن کامل [PDF 1425 kb]   (804 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح براي تنش هاي زنده و غيرزنده محيطي
دریافت: 1400/7/14 | پذیرش: 1400/10/19

فهرست منابع
1. Akar, T., M. Caliskan, J.M. Nicol, S.U. ranbey, E. Sahin, S. Yazar, M. William and H.J. Braun. 2009. Molecular characterization of Cereal Cyst Nematode diagnostic markers Cre1 and Cre3 in some winter wheat germplasm and their potential use against Heterodera filipjevi. Field Crops Research, 114(2): 320-323. [DOI:10.1016/j.fcr.2009.08.001]
2. Biglouei, M., M. Assimi and A. Akbarzadeh. 2010. Effect of water stress at different growth stages on quantity and quality traits of Virginia (flue-cured) tobacco type. Plant, Soil and Environment, 56(2): 67-75. [DOI:10.17221/163/2009-PSE]
3. Breeze, E., E. Harrison, S. McHattie, L. Hughes, R. Hickman, C. Hill, S. Kiddle, Y-S. Kim, Ch.A. Penfold, D. Jenkins, C. Zhang, K. Morris, C. Jenner, S. Jackson, B. Thomas, A. Tabrett, R. Legaie, J.D. Moore, D.L. Wild, S. Ott, D. Rand, J. Beynon, K. Denby, A. Mead and V. Buchanan-Wollaston. 2011. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 23(3): 873-894. [DOI:10.1105/tpc.111.083345]
4. Dababat, A.A., S. Pariyar, J. Nicol, G. Erginbas Orakci, M. Goll, C. Watrin, E. Duveiller and H.J. Braun. 2014. Influence of thiabendazole seed treatment on the integrated control of Heterodera filipjevi on six wheat genotypes with different levels of genetic resistance under controlled conditions. Nematropica, 44(1): 25-30.
5. Duval, M., T.F. Hsieh, S.Y. Kim and T.L. Thomas. 2002. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology, 50(2): 237-248. [DOI:10.1023/A:1016028530943]
6. Edgar, R., M. Domrachev and A.E. Lash. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1): 207-210. [DOI:10.1093/nar/30.1.207]
7. Erginbas-Orakci, G., G. Poole, J.M. Nicol, T. Paulitz, A.A. Dababat and K. Campbell. 2016. Assessment of inoculation methods to identify resistance to Fusarium crown rot in wheat. Journal of Plant Diseases and Protection, 123(1): 19-27. [DOI:10.1007/s41348-016-0001-8]
8. Fujita, M., Y. Fujita, K. Maruyama, M. Seki, K. Hiratsu, M. Ohme-Takagi, L-S.P. Tran, K. Yamaguchi-Shinozaki and K. Shinozaki. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal, 39(6): 863-876. [DOI:10.1111/j.1365-313X.2004.02171.x]
9. Halim, G., Y. Emam and E. Shakeri. 2018. Evaluation of yield, yield components, and stress tolerance indices in bread wheat cultivars at post-anthesis irrigation cut-off. Journal of Crop Production and Processing, 7(4): 121-134 (In Persian). [DOI:10.29252/jcpp.7.4.121]
10. Jensen, M.K., J.H. Rung, P.L. Gregersen, T. Gjetting, A.T. Fuglsang, M. Hansen, N. Joehnk, M.F. Lyngkjaer and D.B. Collinge. 2007. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 65(1-2): 137-150. [DOI:10.1007/s11103-007-9204-5]
11. Jeong, J.S., Y.S. Kim, K.H. Baek, H. Jung, S.H. Ha, Y.D. Choi, M. Kim, C. Reuzeau and J.K. Kim. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 153(1): 185-197. [DOI:10.1104/pp.110.154773]
12. Kadam, S., K. Singh, S. Shukla, S. Goel, P. Vikram, V. Pawar, K. Gaikwad, R. Khanna-Chopra and N. Singh. 2012. Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Functional & Integrative Genomics, 12(3): 447-464. [DOI:10.1007/s10142-012-0276-1]
13. Khodarahmi, M., M. Dehghan and A. omrani. 2020. Genetic analysis of resistance to wheat Fusarium Head Blight in Morvarid (resistant) × Falat (sensitive) cross. Journal of Crop Breeding, 12(34): 62-70 (In Persian). [DOI:10.29252/jcb.12.34.62]
14. Kim, Y.S., S.G. Kim, J.E. Park, H.Y. Park, M.H. Lim, N.H. Chua and C.M. Park. 2006. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. The Plant Cell, 18(11): 3132-3144. [DOI:10.1105/tpc.106.043018]
15. Ko, J.H., S.H. Yang, A.H. Park, O. Lerouxel and K.H. Han. 2007. ANAC012, a member of the plant-specific NAC transcription factor family, negatively Regulates xylary fiber development in Arabidopsis thaliana. The Plant Journal, 50(6): 1035-1048. [DOI:10.1111/j.1365-313X.2007.03109.x]
16. Lin, R., W. Zhao, X. Meng, M. Wang and Y. Peng. 2007. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Science, 172(1): 120-130. [DOI:10.1016/j.plantsci.2006.07.019]
17. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25(4): 402-408. [DOI:10.1006/meth.2001.1262]
18. Mansoori, B., A.A. Ravanlu, K. Noorullahi, N. Azadbakht, H. Jafari and M. Qalandar. 2002. Common wheat crown rot disease in Western Azerbaijan, Ilam, Lorestan, Zanjan and Markazi provinces. Articles abstract of the 15th Iranian Plant Protection Congress, Razi University of Kermanshah, Iran, 41 pp (In Persian).
19. Mauch-Mani, B. and V. Flors. 2009. The ATAF1 transcription factor: at the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Research, 19(12): 1322-1323. [DOI:10.1038/cr.2009.135]
20. McDonald, A. and J. Nicol. 2005. Nematode parasites of cereals. In: Luc, M., R.A. Sikora and J. Bridge (eds.) Plant-parasitic nematodes in subtropical and tropical agriculture. CABI publishing, France. 131-191 pp. [DOI:10.1079/9780851997278.0131]
21. Mcknight, T. and J. Hart. 1966. Some field observation on Crown rot disease of wheat caused by Fusarium graminearum. Queensland Journal Agriculture Animal Science, 23(1): 373-378.
22. Naeemi, T., L. Fahmideh, and B.A. Fakheri. 2020. Assessment of TaNAC2A gene expression and ascorbate peroxidase, catalase enzymes of five Durum wheat genotypes (Triticum turgidum L.) under drought stress. Journal of Crop Breeding, 12(33): 20-28 (In Persian). [DOI:10.29252/jcb.12.33.20]
23. Nakashima, K., H. Takasaki, J. Mizoi, K. Shinozaki and K. Yamaguchi-Shinozaki. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2): 97-103. [DOI:10.1016/j.bbagrm.2011.10.005]
24. Nakashima, K., L.S.P. Tran, D. Van Nguyen, M. Fujita, K. Maruyama, D. Todaka, Y. Ito, N. Hayashi, K. Shinozaki and K. Yamaguchi-Shinozaki. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 51(4): 617-630. [DOI:10.1111/j.1365-313X.2007.03168.x]
25. Nicol, J.M. and R. Rivoal. 2008. Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Ciancio, A. and K.G. Mukerji (eds.) Integrated management and biocontrol of vegetable and grain crops nematodes. 243-287 pp., Springer, Netherlands. [DOI:10.1007/978-1-4020-6063-2_13]
26. Nuruzzaman, M., A.M. Sharoni, K. Satoh, A. Moumeni, R. Venuprasad, R. Serraj, A. Kumar, H. Leung, K. Attia and S. Kikuchi. 2012. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing A day Selection (drought tolerant) and IR64. Molecular Genetics and Genomics, 287(1): 389-410. [DOI:10.1007/s00438-012-0686-8]
27. Olsen, A.N., H.A. Ernst, L.L. Leggio and K. Skriver. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends in plant science, 10(2): 79-87. [DOI:10.1016/j.tplants.2004.12.010]
28. Ooka, H., K. Satoh, K. Doi, T. Nagata, Y. Otomo, K. Murakami, K. Matsubara, N. Osato, J. Kawai, P. Carninci, Y. Hayashizaki, K. Suzuki, K. Kojima, Y. Takahara, K. Yamamoto and S. Kikuchi. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 10(6): 239-247. [DOI:10.1093/dnares/10.6.239]
29. Parry, D.W., P. Jenkinson and L. Mcleod. 1995. Fusarium ear blight (scab) in small grain cereals, a review. Plant Pathology, 44(2): 207-238. [DOI:10.1111/j.1365-3059.1995.tb02773.x]
30. Pérez-Clemente, R.M., V. Vives, S.I. Zandalinas, M.F. López-Climent, V. Muñoz and A. Gómez-Cadenas. 2013. Biotechnological approaches to study plant responses to stress. BioMed Research International, 2013(12): 654120. [DOI:10.1155/2013/654120]
31. Perochon, A., A. Kahla, M. Vranić, J. Jia, K.B. Malla, M. Craze, E. Wallington and F.M. Doohan. 2019. A wheat NAC interacts with an orphan protein and enhances Fusarium head blight disease resistance. Plant Biotechnology Journal, 17(10): 1892-1904. [DOI:10.1111/pbi.13105]
32. Placenta, C.M., J.P.F. D'Mello and A.M.C. Macdonald. 1999. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science and Technology, 78(1-2): 21-37. [DOI:10.1016/S0377-8401(98)00278-8]
33. Ramegowda, V. and M. Senthil-Kumar. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176(2015): 47-54. [DOI:10.1016/j.jplph.2014.11.008]
34. Rasmussen, S., P. Barah, M.C. Suarez-Rodriguez, S. Bressendorff, P. Friis, P. Costantino, A.M. Bones, H.B. Nielsen and J. Mundy. 2013. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiology, 161(4): 1783-1794. [DOI:10.1104/pp.112.210773]
35. Reddy, A.R., K.V. Chaitanya and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11): 1189-1202. [DOI:10.1016/j.jplph.2004.01.013]
36. Sablowski, R.W. and E.M. Meyerowitz. 1998. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/pistillata. Cell, 92(1): 93-103. [DOI:10.1016/S0092-8674(00)80902-2]
37. Shao, H., H. Wang and X. Tang. 2015. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Science, 6(1): 902. [DOI:10.3389/fpls.2015.00902]
38. Shepherd, A., S. McGinn and G. Wyseure. 2002. Simulation of the effect of water shortage on the yields of winter wheat in North-East England. Ecological Modelling, 147(1): 41-52. [DOI:10.1016/S0304-3800(01)00405-7]
39. Shinozaki, K. and K. Yamaguchi-Shinozaki. 2007. Gene networks are involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2): 221-227. [DOI:10.1093/jxb/erl164]
40. Sperotto, R.A., F.K. Ricachenevsky, G.L. Duarte, T. Boff, K.L. Lopes, E.R. Sperb, M.A. Grusak and J.P. Fett. 2009. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta, 230(1): 985-1002. [DOI:10.1007/s00425-009-1000-9]
41. Subbotin, S.A., M. Mundo-Ocampo and J.G. Baldwin. 2010. Systematics of cyst nematodes (Nematoda: Heteroderinae). In: Hunt, D.J. and R.N. Perry (eds.) Nematology Monographs and Perspectives. Brill, Netherlands. 512 pp. [DOI:10.1163/ej.9789004164345.i-512]
42. Takada, S., K. Hibara, T. Ishida and M. Tasaka. 2001. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128(7): 1127-1135. [DOI:10.1242/dev.128.7.1127]
43. Tas, S. and B. Tas. 2007. Some physiological responses of drought stress in wheat genotypes with different ploidy in Turkiye. World Journal of Agriculture and Science, 3(2): 178-183.
44. Van Loon, L.C., M. Rep and C.M. Pieterse. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44(1): 135-162. [DOI:10.1146/annurev.phyto.44.070505.143425]
45. Wang, X., B.M.V.S. Basnayake, H. Zhang, G. Li, W. Li, N. Virk, T. Mengiste and F. Song. 2009. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. International Society for Molecular Plant-Microbe Interaction, 22(10): 1227-1238. [DOI:10.1094/MPMI-22-10-1227]
46. Wilcoxson, R.D., R.H. Bush and E.A. Ozmon. 1992. Fusarium head blight resistance in spring wheat cultivars. Plant Disease, 76(7): 658-661. [DOI:10.1094/PD-76-0658]
47. Wu, Y., Z. Deng, J. Lai, Y. Zhang, C. Yang, B. Yin, Q. Zhao, L. Zhang, Y. Li, C. Yang and Q. Xie. 2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 19(1): 1279-1290. [DOI:10.1038/cr.2009.108]
48. Wu, D., Y. Sun, H. Wang, H. Shi, M. Su, H. Shan, T. Li and Q. Li. 2018. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene, 662(1): 10-20. [DOI:10.1016/j.gene.2018.04.012]
49. Xia, N., G. Zhang, X.Y. Liu, L. Deng, G.L. Cai, Y. Zhang, X.J. Wang, J. Zhao, L.L. Huang and Z.S. Kang. 2010b. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports, 37(1): 3703-3712. [DOI:10.1007/s11033-010-0023-4]
50. Xia, N., G. Zhang, Y.F. Sun, L. Zhu, L.S. Xu, X.M. Chen, B. Liu, Y.T. Yu, X.J. Wang, L.L. Huang and Z.S. Kang. 2010a. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 74(5-6): 394-402. [DOI:10.1016/j.pmpp.2010.06.005]
51. Xue, G.P., H.M. Way, T. Richardson, J. Drenth, P.A. Joyce and C.L. McIntyre. 2011. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 4(4): 697-712. [DOI:10.1093/mp/ssr013]
52. Xue, G.P., N.I. Bower, C.L. McIntyre, G.A. Riding, K. Kazan and R. Shorter. 2006. TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognizes two consensus DNA-binding sequences. Functional Plant Biology, 33(1): 43-57. [DOI:10.1071/FP05161]
53. Zhang, X.M., Q. Zhang, C.L. Pei, X. Li, X. Huang, C.Y. Cheng, X. Wang, L.L. Huang and Z. Kang. 2018. TaNAC2 is a negative regulator in the wheat-stripe rust fungus interaction at the early stage. Physiological and Molecular Plant Pathology, 102(1): 144-153. [DOI:10.1016/j.pmpp.2018.02.002]
54. Zhong, R., C. Lee and Z.H. Ye. 2010. Global analysis of direct targets of secondary wall NAC master switchesin Arabidopsis. Molecular Plant, 3(6): 1087-1103. [DOI:10.1093/mp/ssq062]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb