دوره 11، شماره 31 - ( پاییز 1398 )                   جلد 11 شماره 31 صفحات 236-226 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alishah O, MahmoodJanloo H, Hekmat M H, Naderi Arefi A, Sidmasoomi S Y, Talat F. (2019). Investigation of Genotype × Environment Interaction and Yield Stability of Hopeful Cotton (G.hirsutum L.) Genotypes. J Crop Breed. 11(31), 226-236. doi:10.29252/jcb.11.31.226
URL: http://jcb.sanru.ac.ir/article-1-1041-fa.html
عالیشاه عمران، محمودجانلو حجت اله، حکمت محمد حسن، نادری عارفی علی، سید معصومی سید یعقوب، طلعت فرشید. بررسی اثرمتقابل ژنوتیپ × محیط و پایداری عملکرد ژنوتیپ‌های امیدبخش پنبه (Gossypium hirsutum L.) پژوهشنامه اصلاح گیاهان زراعی 1398; 11 (31) :236-226 10.29252/jcb.11.31.226

URL: http://jcb.sanru.ac.ir/article-1-1041-fa.html


1- مؤسسه تحقیقات پنبه کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران
2- آموزش و ترویج کشاورزی گرگان خ شهید بهشتی، مؤسسه تحقیقات پنبه کشور
3- آموزش و ترویج کشاورزی داراب، ایستگاه تحقیقات کشاورزی حسن آباد
4- تحقیقات، آموزش و ترویج کشاورزی
5- تحقیقات، آموزش و ترویج کشاورزی ارومیه، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی
چکیده:   (3245 مشاهده)
     به منظور مطالعه اثر متقابل ژنوتیپ × محیط و پایداری عملکرد ژنوتیپ‌های امیدبخش پنبه (Gossypium hirsutum L.)، ده ژنوتیپ جدید پنبه در 12 محیط آزمایشی و در قالب طرح بلوک­های کامل تصادفی با چهار تکرار مورد بررسی قرار گرفتند. آزمایش در مدت دو سال (1393 و 1394) و در شش منطقه (هاشم‌آباد و کارکنده،‌ داراب، مغان، ارومیه و گرمسار) به مورد اجرا در آمد. بر اساس نتایج تجزیه واریانس مرکب اثر مستقل سال، مکان و ژنوتیپ و همچنین اثرات متقابل دوگانه و سه گانه (سال × مکان× ژنوتیپ) بر عملکرد، تعداد غوزه، وزن غوزه، زودرسی و تعداد شاخه رویا در سطح احتمال یک درصد معنی‌دار بودند. با توجه به نتایج مقایسه میانگین مرکب داده‌ها در سطح سال و مکان‌های آزمایشی، ژنوتیپ K8802 با عملکرد 3691 کیلوگرم در هکتار در رتبه نخست قرار داشت. ژنوتیپ‌های پایدار شناسایی شده بر اساس پارامترهای ضریب تغییرات، واریانس محیطی و روش ابرهارت و راسل کاملاً مشابه بود، اما تعداد ژنوتیپ‌های پایدار شناسایی شده بر اساس روش‌های مذکور کمتر از روش فینلی و ویلکینسون بود. دامنه تشابه نتایج گزینش ژنوتیپ‌های پایدار بر اساس شاخص‌های مختلف پایداری از 67 تا 100 درصد متغیر و ضرایب همبستگی عملکرد با شاخص‌های پایداری (بجز ضریب رگرسیون) از لحاظ آماری معنی‌دار بود. بر اساس نتایج این تحقیق، ژنوتیپ‌ NSK847 در مرحله نخست و ژنوتیپ‌های GKTB113 و SKSH-249 بعنوان ژنوتیپ‌های پایدار با سازگاری و عملکرد مناسب جهت آزادسازی و استفاده در برنامه‌های به‌نژادی کشور شناسایی شدند.
متن کامل [PDF 2219 kb]   (979 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: اصلاح نباتات
دریافت: 1398/1/24 | پذیرش: 1398/4/19

فهرست منابع
1. Anonymous. 2017. Statistical Data of Agricultural production in I.R.Iran., Ministry of Jihade-e-Agriculture, pp: 24-26.
2. Abdellatif, K.F. and Y.A. Soliman. 2013. African Journal of Biotechnology Genetic relationships of cotton (Gossypium barbadense L.) genotypes as studied by morphological and molecular markers. African Journal of Biotechnology, 12: 4736-4746. [DOI:10.5897/AJB2013.12361]
3. Ahmadi, J., B.S. Vaezi and H. Naraki. 2013. Rapeseed stability analysis and comparison of genotype selection methodes by satability statistics at rainfed conditions. Crop production, 36: 13-22.
4. Alishah, O. 2018. Two new cotton cultivar registration (LM1321 and LM1676). Final Report, Cotton Research Institute of Iran. 1: 1-47.
5. Baloch, M., A.W. Baloch, U.A. Ansari, M. Baloch, S. Abro, N. Gandahi, G. Hussain, A.M. Baloch, M. Ali and I. Ahmed. 2016. Interrelationship analysis of yield and fiber traits in promising genotypes of upland cotton. Pure Appllied Biology, 5: 263-269. [DOI:10.19045/bspab.2016.50034]
6. Becker, H.C. and J. Léon. 1988. Stability Analysis in Plant Breeding. Plant Breeding, 101: 1-23. [DOI:10.1111/j.1439-0523.1988.tb00261.x]
7. Campbell, B.T. and M.A. Jones. 2005. Assessment of genotype × environment interactions for yield and fiber quality in cotton performance trials. Euphytica, 144: 69-78. [DOI:10.1007/s10681-005-4336-7]
8. Carvalho, L.P. de, C.C. Salgado, F.J.C. Farias and V.Q. Carneiro. 2015. Stability and adaptability of cotton genotypes for fiber quality. Ciência Rural, 45: 598-605. [DOI:10.1590/0103-8478cr2013023]
9. Choukan, R. 2011. Genotype, environment and genotype× environment interaction effects on the performance of maize (Zea mays L.) inbred lines. Crop Breeding Journal, 1: 97-103.
10. Duarte, J.B. and M.J. Zimmermann. 1995. Correlation among yield stability parameters in common bean. Crop Science, 35: 905-912. [DOI:10.2135/cropsci1995.0011183X003500030046x]
11. Eberhart, S.A. and W.A. Russell. 1966. Stability Parameters for Comparing Varieties1. Crop Science, 6: 36. [DOI:10.2135/cropsci1966.0011183X000600010011x]
12. El-nasr, T.H.S.A., M.M. Ibrahim and K.A. Aboud. 2006. Stability Parameters in Yield of White Mustard ( Brassica Alba L.) in Different Environments, 2: 47-55.
13. Erdemci, I. 2018. Investigation of genotype × environment interaction in chickpea genotypes using AMMI and GGE biplot analysis. Turkish Journal of Field Crops, 23: 20-26. [DOI:10.17557/tjfc.414846]
14. Esmaeilzadeh Moghaddam, M., M. Zakizadeh, H. Akbari Moghaddam, M. Abedini Esfahlani, M. Sayahfar, A.R. Nikzad, S.M. Tabib Ghaffari and A.L. Aeineh. 2010. Study of grain yield stability and genotype - environment interaction in 20 bread wheat lines in warm and dry areas of south of Iran. EJCP, 3: 179-200.
15. Farias, F.J.C., L.P. Carvalho, J.L. Silva Filho and P.E. Teodoro. 2016. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso. Genetics and Molecular Research, 15: 1-10. [DOI:10.4238/gmr.15028009]
16. Farshadfar, E. and J. Sutka. 2006. Biplot analysis of genotype-environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica, 54: 459-467. [DOI:10.1556/AAgr.54.2006.4.8]
17. Finlay, K.W. and Wilkinson, G.N. 1963. The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research, 14: 742-754. [DOI:10.1071/AR9630742]
18. Freeman, G.H. and J.M. Perkins. 1971. Environmental and genotype-environmental components of variability: Viii Relations between genotypes grown in different environments and measures of these environments. Heredity, 27: 15-23. [DOI:10.1038/hdy.1971.67]
19. ICAC. 2016. ICAC Recorder. International Cotton Advisory Committee, 24: 3-20.
20. ICAC. 2018. ICAC Recorder. International Cotton Advisory Committee, 36: 1-33.
21. Iqbal, M.Z., S. Nazir and M. Younas. 2018. Stability analysis of candidate bollgard bt cotton
22. (Gossypium hirsutum L.) genotypes for yield traits. International Journal of Bioscience, 13: 55-63.
23. Joshi, A.K., J. Crossa, B. Arun, R. Chand, R. Trethowan, M. Vargas and I. Ortiz-Monasterio. 2010. Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research, 116: 268-277. [DOI:10.1016/j.fcr.2010.01.004]
24. Lee, E.A., T.K. Doerksen and L.W. Kannenberg. 2003. Genetic Components of Yield Stability in Maize Breeding Populations. Crop Science, 43: 2018-2027. [DOI:10.2135/cropsci2003.2018]
25. Lin, C.S., M.R. Binns and L.P. Lefkovitch. 1986. Stability analysis: where do we stand? Crop Sci., 26: 894-900. [DOI:10.2135/cropsci1986.0011183X002600050012x]
26. LIN, C.S. and M.R. BINNS. 1988. a Superiority Measure of Cultivar Performance for Cultivar × Location Data. Canadian Journal of Plant Science, 68: 193-198. [DOI:10.4141/cjps88-018]
27. Maleia, M.P., A. Raimundo, L.D. Moiana, J.O. Teca, F. Chale, E. Jamal, J.N. Dentor and B.A. Adamugy. 2017. Stability and adaptability of cotton (Gossypium hirsutum L.) genotypes based on AMMI analysis. Australian Journal of Crop Science, 11: 367-372. [DOI:10.21475/ajcs.17.11.04.pne60]
28. Mofidian, M.A., Z. Movahedi and H. Dehghani. 2009. Yield stability analysis for superior alfalfa ecotypes from cold regions in Iran- Using univariate methods. Iranian Agronomy Science, 11: 162-172.
29. Mohammadi, M. 2014. Grouping barley genotypes by regression-based and clustering methods in. 3: 30-35.
30. Mohammadi, R. and A. Amri. 2012. Analysis of genotype × environment interaction in rain-fed durum wheat of Iran using GGE-biplot and non-parametric methods. Canadian Journal of Plant Science, 92: 757-770. [DOI:10.4141/cjps2011-133]
31. Mohammadi, R. and A. Amri. 2013. Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica, 192: 227-249. [DOI:10.1007/s10681-012-0839-1]
32. Mokhtarifar, K., R.A. and S.P.S. 2016. Yield Stability Analysis of Eight Bread Wheat (Triticum aestivum L.) Cultivars in Kerman Province Condition. Crop Breeding Journal, 8: 96-103. [DOI:10.18869/acadpub.jcb.8.17.103]
33. Momeni-Zadeh, T., H. Najafi Zarini, M. Norouzi and A.R. Nabipour. 2018. A Consideration on Genotype and Environment Interactions and Stability of Grain Yield in Promising Lines of Rice (Oryza sativa L.). Journal of Crop Breeding, 10: 135-142. [DOI:10.29252/jcb.10.27.135]
34. Moradi, F., H. Safari and A. Jalilian. 2011. Study of genotype × environment interaction for sugar beet monogerm cultivars using AMMI method. Sugerbeet2, 28: 56-66.
35. Mudada, N., J. Chitamba, T.O. Macheke and P. Manjeru. 2017. Genotype × Environmental Interaction on Seed Cotton Yield and Yield Components. OALib, 04: 1-22. [DOI:10.4236/oalib.1103192]
36. Mudada, N., J. Chitamba, T.O. Macheke and P. Manjeru. 2017. Genotype × Environmental Interaction on Seed Cotton Yield and Yield Components. OALib, 04: 1-22. [DOI:10.4236/oalib.1103192]
37. Pourdad, S. and M. Jamshid Moghaddam. 2013. Study on Genotype×Environment Interaction Through GGE Biplot for Seed Yield in Spring Rapeseed (Brassica Napus L.) in Rain-Fed Condition. Journal of Crop Breeding, 25: 1-14.
38. Sabaghnia, N., R. Karimizadeh and M. Mohammadi. 2012. Genotype by environment interaction and stability analysis for grain yield of lentil genotypes. Zemdirbyste-Agriculture 99: 305-312.
39. Said, S.R.N. 2016. Stability of Yield and Yield Components For Some Egyptian Cotton Genotypes. Egypt. Jour. Plant Breed, 20: 541-552. [DOI:10.12816/0031413]
40. Sayar, M.S., A.E. Anlarsal and M. Basbag. 2013. Genotype-environment interactions and stability analysis for dry-matter yield and seed yield in hungarian vetch (Vicia pannonica CRANTZ.). Turkish Journal of Field Crops, 18: 238-246.
41. Sharifi, P., H. Astereki and M.R. Safari Motlagh. 2014. Evaluation of Genotype, Environment and Genotype × Environment Interaction Effects on Some of Important Quantitative Trits of Faba Bean (Vicia faba L.). Journal of Crop Breeding, 26: 73-88.
42. Shukla, G.K. 1972. Some statistical aspects of partitioning genotype- environmental components of variability. Heredity, 29: 237-245. [DOI:10.1038/hdy.1972.87]
43. Singh, C., V. Kumar, I. Prasad, V.R. Patil and B.K. Rajkumar. 2016. Response of upland cotton (G.hirsutum L.) genotypes to drought stress using drought tolerance indices. Journal of Crop Science and Biotechnology, 19: 53-59. [DOI:10.1007/s12892-015-0073-1]
44. Suinaga, F.A., C.S. Bastos and L.E.P. Rangel. 2006. Phenotypic Adaptability and Stability of Cotton Cultivars in Matogrosso State, Brazil. Pesquisa Agropecuária Tropical, 36: 145-150.
45. Teodoro, P.E., F.J.C. Farias, L.P. de Carvalho, L.P. Ribeiro, M. Nascimento, C.F. Azevedo, C.D. Cruz and L.L. Bhering. 2019. Adaptability and Stability of Cotton Genotypes Regarding Fiber Yield and Quality Traits. Crop Science, 0: 0. [DOI:10.2135/cropsci2018.04.0250]
46. Vaezi,S., J.B. Ahmadi and H. Naraki. 2011. Genotype × environment interaction and stability analysis for safflower (Carthamus tinctorius L.) genotypes under warm rainfed conditions. Iranian Agronomy Science, 13: 395-407.
47. Wricke, G. 1962. Űber eine methode zür erfassung der őkologischen streubreite in feldrersuchen. Pflanzen- Zuchtg. Zuchtg, 47: 92-96.
48. Wu, J., J.N. Jenkins, J.C. McCarty and J. Zhu. 2004. Genetic association of yield with its component traits in a recombinant inbred line population of cotton. Euphytica, 140: 171-179. [DOI:10.1007/s10681-004-2897-5]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه اصلاح گیاهان زراعی می باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Crop Breeding

Designed & Developed by: Yektaweb