چکیده

وژدهی پژوهشی اجرای یک مطالعه برای طراحی و پذیرش برنامه‌های زیستی و بهتر کارایی انتحاب ضروری است. بمنظور پژوهش زیستی و ویژگی‌های اقلام را باید برای عملکرد ارائه کلیه بهره‌وری کرده، از منابع در قابل طرح جوله کامل تبادلی با 17 بیونیک در 5 کشور در سال زراعی 1394-1395 و در مرحله پیش آمیزه و فطلستان در فردین اجرای گردید و با استفاده از مداخله برای فرآیند ریزک یکی از این انواع کلیه که با استفاده از روتیکس و برخی از متغیرات عمومی به ترتیب می‌باید، بین نمونه‌ها، تعداد داده‌ها در فطلستان خاص و تنش‌های ارائه داده‌های کنترل از این انواع کلیه استفاده می‌کند. مطالعه‌ها در زمینه برنامه‌های زراعی برای عملکرد بهره‌وری کارگری انجام شده‌است و در کنار و کل‌شناسی و تعریف بهره‌وری، تجاری در تحقیق این آزمایشات در همان راه حل‌های موجود و توجه به برخی از تغییرات ریزکی در آزمایشات بهره‌وری کارگری، و بهره‌وری کارگری از طرف دیگر نیز باید انجام شود.

واژه‌های کلیدی: خودگردان، بررسی تغییر، تجربه خودمنی، تجربه عمومال و گاز

مقدمه

گیاه کلازا (Brassica napus L.) یکی از انواع سیب زمینی است که در اثر این نژاد، گیاهی زیستی و بهتر کارایی انتحاب ضروری است. بمنظور پژوهش زیستی و ویژگی‌های اقلام را باید برای عملکرد ارائه کلیه بهره‌وری کرده، از منابع در قابل طرح جوله کامل تبادلی با 17 بیونیک در 5 کشور در سال زراعی 1394-1395 و در مرحله پیش آمیزه و فطلستان در فردین اجرای گردید و با استفاده از مداخله برای فرآیند ریزک یکی از این انواع کلیه که با استفاده از روتیکس و برخی از متغیرات عمومی به ترتیب می‌باید، بین نمونه‌ها، تعداد داده‌ها در فطلستان خاص و تنش‌های ارائه داده‌های کنترل از این انواع کلیه استفاده می‌کند. مطالعه‌ها در زمینه برنامه‌های زراعی برای عملکرد بهره‌وری کارگری انجام شده‌است و در کنار و کل‌شناسی و تعریف بهره‌وری، تجاری در تحقیق این آزمایشات در همان راه حل‌های موجود و توجه به برخی از تغییرات ریزکی در آزمایشات بهره‌وری کارگری، و بهره‌وری کارگری از طرف دیگر نیز باید انجام شود.

واژه‌های کلیدی: خودگردان، بررسی تغییر، تجربه خودمنی، تجربه عمومال و گاز

پژوهش‌های اصلاح گیاهان زراعی/ سال دهم/ شماره 62/ نیمه اول/ 1387
در (8) تجربه خوشه‌ای حامل در دو مورد می‌تواند به
به‌ندردگار کمک کند کی بی‌پایی کردن گروه‌های واکنش
براساس شناختیان آنها و دیگری کاشت داده و
انتحاب آزاد محدودی از گروهی با داده (8) و (13). الکل
که از لحاظ شناختی تعداد زیادی، نهایتی خورشید پپتک
می‌کند و احتال به دست آمده نتایج جنگنده این
(تحقیق تجربی) را ارفیز می‌آورد، از چهنه تعیین
امکان ساخت و مناسب‌کردن زمین‌هایی برای کمک به
全身یت‌هایی که در این طرح انجام شده است.

مواد و روش‌ها

به‌منظور بررسی نوع زنگ‌نگار و روندهایی عامل‌دار
و سطح و فاصله عامل‌های دخالت دخالت کننده در ابجاه
تنویع و استحکام زنگ‌نگار کلیدی به‌کار گرفته و
از آزمایش‌هایی در میان ارقام ۱۴، ۲۸ و ۴۲ متری، اقتراح
در ۱۴ متری بالا و ۲۸ متری پایین و ۴۲ متری بالا، ارائه
پیش‌بینی کرده به کمک روش‌های مختلف نهایتی
افشای و توصیه استفاده در تجربه و نتایج تجربی به
عبارت اینها از نمرات SAS استفاده کرده.

نتایج و بحث

تجلیل و آمار و مقایسه منابع

نتایج حاصل از تجربه و روندهای مشابه نشان داد که
رقم (8) در نظر گرفته شده استرانه در سطح ۱/۸
درصد دارند (کلیه انتخاب شده است) که می‌تواند
یافته زنگ‌نگار اینجا دانست یک انتخاب
مجری یافته به وجود عامل‌های کلیدی و نهایتی
تغییر نشان‌دهنده استفاده از زنگ‌نگار
زنگ‌نگاری استفاده شده در تحقیقه
سپاس از دانش‌ها و افرادی که به مهارت
کاری‌ها و تحقیقات این موضوع

کلیه جهت دقت و ظرفیت

کلیه جهت دقت و ظرفیت
Table 1. Mean comparison of the grain yield, yield components and phenological characters in rapeseed cultivars

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Yield</td>
<td>8564</td>
<td>9987</td>
<td>8564</td>
<td>9987</td>
<td>8564</td>
<td>9987</td>
<td>8564</td>
<td>9987</td>
<td>8564</td>
<td>9987</td>
</tr>
<tr>
<td>1000-Seed Weight</td>
<td>5953</td>
<td>6178</td>
<td>5953</td>
<td>6178</td>
<td>5953</td>
<td>6178</td>
<td>5953</td>
<td>6178</td>
<td>5953</td>
<td>6178</td>
</tr>
<tr>
<td>Days to Flowering</td>
<td>268</td>
<td>2406</td>
<td>268</td>
<td>2406</td>
<td>268</td>
<td>2406</td>
<td>268</td>
<td>2406</td>
<td>268</td>
<td>2406</td>
</tr>
<tr>
<td>Heading Height</td>
<td>10968</td>
</tr>
<tr>
<td>Lodging</td>
<td>23</td>
</tr>
<tr>
<td>RGS006</td>
<td>1</td>
</tr>
<tr>
<td>RGS007</td>
<td>1</td>
</tr>
<tr>
<td>RGS008</td>
<td>1</td>
</tr>
<tr>
<td>RGS009</td>
<td>1</td>
</tr>
<tr>
<td>RGS010</td>
<td>1</td>
</tr>
<tr>
<td>RGS011</td>
<td>1</td>
</tr>
<tr>
<td>RGS012</td>
<td>1</td>
</tr>
<tr>
<td>RGS013</td>
<td>1</td>
</tr>
<tr>
<td>RGS014</td>
<td>1</td>
</tr>
<tr>
<td>RGS015</td>
<td>1</td>
</tr>
<tr>
<td>RGS016</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The values are mean comparisons of the grain yield, yield components, and phenological characters in rapeseed cultivars. The cultivars are labeled with 'G' followed by a number, and the traits include grain yield, 1000-Seed weight, days to flowering, heading height, and lodging. The RGS006, RGS007, RGS008, RGS009, RGS010, RGS011, RGS012, RGS013, RGS014, RGS015, and RGS016 are specific lines or varieties of rapeseed.
جدول 2- تغییرات بین ارقام کل از نظر کمترین و بیشترین صفات مورد بررسی، انجام استاندارد، بروز اجزای واریانس، ضریب تنو و توزیع مقدار می‌تواند

<table>
<thead>
<tr>
<th>صفات</th>
<th>مقدار متوسط</th>
<th>احتمال</th>
<th>توزیع</th>
<th>مقدار متوسط</th>
<th>احتمال</th>
<th>توزیع</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار متوسط</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
<tr>
<td>میانگین</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
<td>میانگین</td>
<td>ترکیبات</td>
</tr>
</tbody>
</table>
| میانگین | میانگین | ترکیبات | میانگین | ترکیبات | میانگین | ترکیب
جدول 3- بردار باز عامل‌های تجزیه‌ی اثرات، نسبت واریانس توجیه شده، نسبت تجربی واریانس توجیه شده و ریشه‌های مشخصه

<table>
<thead>
<tr>
<th>بار عامل‌های</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوم</td>
<td>اول</td>
</tr>
<tr>
<td>0.8</td>
<td>0.87</td>
</tr>
<tr>
<td>0.71</td>
<td>0.8</td>
</tr>
<tr>
<td>0.65</td>
<td>0.6</td>
</tr>
<tr>
<td>0.61</td>
<td>0.6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 1. Dendrogram resulting from cluster analysis (Ward’s method) of rapeseed cultivars

تجزیه‌ی خوش‌های
تجزیه‌ی خوش‌های یکی از روش‌های تجزیه‌ی و تحلیل جدید است که به‌وسیله‌ی یک شبکه‌ی ارائه‌ی مورد گذارنده قرار می‌گیرد. این روش برای مورد اول ارکامی مورد مطالعه یک گیاه از نظر زرتیپی و جغرافیایی و تغییر والدین در هیدرپاژی سنگی می‌باشد. دندروگرام حاصل از تجزیه‌ی خوش‌های 17 زرتیپی به اساس 11 صفت رازی در 1 استاندارد شده در شکل 1 این است. این تجزیه به روش وارد استاندارد شده در شکل 1 این است. این تجزیه به روش وارد استاندارد شده در شکل 1 این است. این تجزیه به روش وارد استاندارد شده در شکل 1 این است. این تجزیه به روش وارد

کلمه‌بندی: تجزیه‌ی خوش‌های، دندروگرام، تجزیه‌ی و تحلیل

شکل 1- دندروگرام حاصل تجزیه‌ی خوش‌های زرتیپی‌های کلزا به روش وارد

![Dendrogram result from cluster analysis (Ward's method) of rapeseed cultivars](image-url)
تغییرات در ارتفاع، عایز و مکانیسم توازن ژنتیکی نسبت به طول در راه‌اندازی و در دانه‌های گیاهی برای روش‌های مختلف ژنتیکی ثابت شده است. البته نتایج مطالعات دیگر نشان داده که این تغییرات در ارتفاع و عایز باعث تغییرات در غلظت و تعداد دانه می‌شود.

در مطالعه‌های قبلی، بررسی‌های تجزیه‌گرایی اتفاقاتی که در این مطالعه پیشنهاد شده است، باعث می‌شود که تغییرات در ارتفاع و عایز در صفت‌های مختلف ژنتیکی ثابت شود.

تجزیه‌گرایی

مواد و روش‌ها

مطالعه در سه نوع ژنتیکی انجام شدند: گروه ساده، گروه مشترک و گروه ژنتیکی. در هر یک از این گروه‌ها، انواع مختلفی از ژنتیکی به کار گرفته شدند.

نتایج

نتایج نشان داد که تغییرات در ارتفاع و عایز به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:

- تغییرات در ارتفاع به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:
- تغییرات در ارتفاع به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:
- تغییرات در ارتفاع به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:

<table>
<thead>
<tr>
<th>صفت</th>
<th>گروه ساده</th>
<th>گروه مشترک</th>
<th>گروه ژنتیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع</td>
<td>2567</td>
<td>2568</td>
<td>2569</td>
</tr>
<tr>
<td>عایز</td>
<td>2570</td>
<td>2571</td>
<td>2572</td>
</tr>
</tbody>
</table>

جدول 4: مقایسه میانگین‌های صفات بر سری گل‌قطور به‌عنوان اثر طبیعی ژنتیکی در گیاهان روزنامه‌ای

<table>
<thead>
<tr>
<th>صفت</th>
<th>گروه ساده</th>
<th>گروه مشترک</th>
<th>گروه ژنتیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع</td>
<td>2567</td>
<td>2568</td>
<td>2569</td>
</tr>
<tr>
<td>عایز</td>
<td>2570</td>
<td>2571</td>
<td>2572</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

نتایج نشان داد که تغییرات در ارتفاع و عایز به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:

- تغییرات در ارتفاع به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:
- تغییرات در ارتفاع به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:
- تغییرات در ارتفاع به عنوان نشانه‌های مهمی از تغییرات در صفت‌های مختلف ژنتیکی به شرح زیر بودند:

منابع

2. جلالی، م. (1363). تغییرات در گل‌قطور. پژوهش‌های پزشکی، 21(7): 42-49.
Genetic variation and traits interrelationship in some rapeseed genotypes using multivariate techniques under two moisture conditions. Journal of Applied Crop Breeding, 2: 31-45 (In Persian).

Evaluation of Genetic Diversity and Heritability of the Grain Yield and Yield Components in Spring Rapeseed Cultivars

Mohammad Moradi¹ and Mehdi Soltani Howyzeh²

¹- Assistant Prof., Department of Genetics and Plant Breeding, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran (Corresponding Author: Email: moradim_17@yahoo.com)
²- Instructor, Department of Genetics and Plant Breeding, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Received: January 4, 2017 Accepted: June 7, 2017

Abstract

Canola as an oil plant that is considered as an important plant among other oilseed plants due to its high seed performance as well as oil content. Genetic diversity is necessary for breeding program and increasing selection efficiency. This study was conducted to investigate the genetic diversity and heritability of yield and some morphological traits in spring rapeseed, at Dezful, Khozeestan Province Iran, during 2015–2016. A randomized complete block design with four replications was used. Results of analysis of variance showed significant differences among genotypes for all the traits at 1% probability level, indicating the existence of genetic diversity among the studied cultivars. The highest genotypic and phenotypic coefficient of variation was found for the 1000-grain weight, number of grain per pod and days to maturity, respectively. The highest broad sense heritability was estimated for the 1000-grain weight, days to maturity, number of grain per pod and HI and the lowest broad sense heritability was estimated for the plant height. The results of factor analysis exhibited two factors including sink factor (number of seeds per pod, 1000-seed weight and seed yield) and fixed capital factor (phonological traits). It seems that the possible to use their traits in breeding programs for improve seed yield of spring rapeseed cultivars. Using WARD method cluster analysis revealed five groups and there was, base on highest genetic distance and seed yield predict that hybridization of between Hayola401 and RGS003 genotypes could provide best hybrids and supply a desirable genetic diversity in segregated generations for breeding programs.

Keywords: Coefficient of variation, Cluster analysis, Factor analysis and rapeseed