چکیده

در این مطالعه سه نشانه بر اساس انتخاب جنگلی جهان زراعی و تحقیق در مورد انتخاب ک غالب از اثرات پلیوتوپیک شد. اثرات نشانگرین بار خوراکی برای انتخاب این شاخص، رویکردن‌های با بالایی که پیشی باید، از دیگر نشانگرین و شاخص‌های قرار داشته باشد. حوزه‌های بالایی که پیشی باید برای انتخاب و در حوزه‌های بالایی که پیشی باید برای انتخاب

ISSR

تجزیه ارتباط برخی از بارامترهای بایاد در گندم نان با استفاده از اشکال‌های اسنتیومینت (Trisacium aestivum)

د. ﻣﻘﺪم

مقدمه

در این مطالعه سه نشانه بر اساس انتخاب جنگلی جهان زراعی و تحقیق در مورد انتخاب ک غالب از اثرات پلیوتوپیک شد. اثرات نشانگرین بار خوراکی برای انتخاب این شاخص، رویکردن‌های با بالایی که پیشی باید، از دیگر نشانگرین و شاخص‌های قرار داشته باشد. حوزه‌های بالایی که پیشی باید برای انتخاب و در حوزه‌های بالایی که پیشی باید برای انتخاب

ISSR

واژه‌های کلیدی: بارامترهای بایادی، تجزیه ارتباطی، گندم نان و اشکال‌های اسنتیومینت (Trisacium aestivum)
تجزیه ارتباط برخی از پارامترهای پایداری در گندم بادان با استفاده از نشانگرها

در نظر گرفته شد و در شرایط نش در تمام طول رشد ابزاری اجرام مشخص می‌شود. همایش سایه‌گیری از هوا و هوای خشکی‌تر، بیش‌تری کاهش در اندازه‌گیری‌ها و تغییرات در اثر شرایط جریان و شرایط جریانی در اثر آب‌وری و بارش اثرات قبلی و بعدی در این گروه‌ها در حالت خشکی و تغییرات آب و هوا در میانگین اندازه‌گیری‌ها و تغییرات در شرایط سطح آب و هوایی در این مطالعه ملاحظه شد.

جدول 1

<table>
<thead>
<tr>
<th>کد نشانگر</th>
<th>نام نشانگر</th>
<th>تعداد نشانگر</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC-47359</td>
<td>Geravandi-17</td>
<td>1</td>
</tr>
<tr>
<td>WC-47403</td>
<td>WC-47536</td>
<td>2</td>
</tr>
<tr>
<td>WC-47388</td>
<td>WC-47419</td>
<td>3</td>
</tr>
<tr>
<td>WC-47461</td>
<td>WC-4868</td>
<td>4</td>
</tr>
<tr>
<td>WC-4515</td>
<td>WC-5046</td>
<td>5</td>
</tr>
<tr>
<td>پیشتر</td>
<td>WC-4995</td>
<td>6</td>
</tr>
<tr>
<td>Mophan-3</td>
<td>پیشکش</td>
<td>7</td>
</tr>
<tr>
<td>WC-47472</td>
<td>WC-4536</td>
<td>8</td>
</tr>
<tr>
<td>WC-4968</td>
<td>یکم</td>
<td>9</td>
</tr>
<tr>
<td>WC-47528</td>
<td>WC-47582</td>
<td>10</td>
</tr>
</tbody>
</table>

1- Amplified fragment length polymorphism
2- Inter Simple Sequence Repeat
برنیم این و بنیت، شاخص ایمی - اول، شاخص سازگاری هدفی، آماره‌های بیشگی و لوتوس و تغییرات به‌روز کردن Excel E modelos نویسی از نرم‌افزار استاندارد دو همچنین در بخش مولکولی آگزگر استاندارد (جدول 3).

به مثابه تغییرات و دو اثر مقیاس Zنتیبی و محاسبه انجام شد.

تجزیه باید بر میزان گندم بر اساس آماره‌های تک متغیر، آماره‌های ضریب تغییرات، وادریس میان‌گروهی، اکوولانس ریک آگزگر وایانس پایداری، آماره شبپرگرشون، میانگین انحراف از رگرسیون، تجزیه واریانس جفتی پیشین و پیترس، شاخص

جدول 2- موقعیت جغرافیایی و آب هوای محل اجرای آزمایش

<table>
<thead>
<tr>
<th>Table 2. Geographic and meteorological location of the test site</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول جغرافیائی (یوگری)</td>
</tr>
<tr>
<td>1310 متر</td>
</tr>
<tr>
<td>شرق مدل</td>
</tr>
<tr>
<td>1300 متر</td>
</tr>
</tbody>
</table>

نتایج و بحث

نتایج تجزیه واریانس مکر میلانکرد دانه برای 20 Zنتیبی کند در چهار سال در دو شرایط نشی و عدم تغییر در 30 آزاد اثرات مشابه دارد. برای تعیین اثرات معنی‌دار ف موافقات واریانس مکر مرود آزمون F برابر مدل اکوولانس بیشتر بر تفاوت آماری میان دو آرامه تفاوت آماری بین میان دو آرامه Zنتیبی اثر

جدول 3- تجزیه واریانس صفات مولکولی در Zنتیبی‌های گندم

<table>
<thead>
<tr>
<th>Table 3. Analysis of variance for the measured traits of wheat genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص‌های</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>تعداد سلایدر</td>
</tr>
<tr>
<td>تعداد گیاه</td>
</tr>
<tr>
<td>تعداد میانه</td>
</tr>
<tr>
<td>تعداد مکار</td>
</tr>
<tr>
<td>تعداد وارد</td>
</tr>
<tr>
<td>تعداد وارد</td>
</tr>
<tr>
<td>تعداد وارد</td>
</tr>
<tr>
<td>تعداد وارد</td>
</tr>
</tbody>
</table>

شناسی: یک عدد در سطح احتمال یک درصد.
Table 4. Parametric stability statistics and their rank for grain yield of genotypes studied in eight environments

<table>
<thead>
<tr>
<th>Environment</th>
<th>Mean</th>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Shape</th>
<th>Kurtosis</th>
<th>Skewness</th>
<th>Rank</th>
<th>Zygote Mean</th>
<th>Zygote Variance</th>
<th>Zygote Standard Deviation</th>
<th>Zygote Shape</th>
<th>Zygote Kurtosis</th>
<th>Zygote Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment 1</td>
<td>15</td>
<td>1.5</td>
<td>1.2</td>
<td>1.1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>15</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Environment 2</td>
<td>20</td>
<td>2.0</td>
<td>2.0</td>
<td>1.7</td>
<td>1.5</td>
<td>0.5</td>
<td>2</td>
<td>20</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Environment 3</td>
<td>25</td>
<td>2.5</td>
<td>2.5</td>
<td>2.1</td>
<td>2.1</td>
<td>1</td>
<td>3</td>
<td>25</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>Environment 4</td>
<td>30</td>
<td>3.0</td>
<td>3.0</td>
<td>2.3</td>
<td>2.3</td>
<td>2</td>
<td>4</td>
<td>30</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.3</td>
<td>2</td>
</tr>
<tr>
<td>Environment 5</td>
<td>35</td>
<td>3.5</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
<td>5</td>
<td>35</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>Environment 6</td>
<td>40</td>
<td>4.0</td>
<td>4.0</td>
<td>2.7</td>
<td>2.7</td>
<td>4</td>
<td>6</td>
<td>40</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.7</td>
<td>4</td>
</tr>
<tr>
<td>Environment 7</td>
<td>45</td>
<td>4.5</td>
<td>4.5</td>
<td>2.8</td>
<td>2.8</td>
<td>5</td>
<td>7</td>
<td>45</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>2.8</td>
<td>5</td>
</tr>
<tr>
<td>Environment 8</td>
<td>50</td>
<td>5.0</td>
<td>5.0</td>
<td>2.9</td>
<td>2.9</td>
<td>6</td>
<td>8</td>
<td>50</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>2.9</td>
<td>6</td>
</tr>
</tbody>
</table>
این صفحه یک صفحه از یک مطالعه از نظریه‌های مختلف و به ویژه از نظریه‌های DNA است. این مطالعه بر روی اطلاعات محصولی از ایالات عالی چندکی استفاده شده است. نتایج نشان می‌دهد که فرآیند انتخاب از این مطالعه با استفاده از DNA می‌تواند به عنوان یک روش کاربردی و موثر برای تعیین آفت‌های های استفاده شود.

<table>
<thead>
<tr>
<th>اطلاعات شناسایی</th>
<th>تعداد</th>
<th>ضریب مکرر</th>
<th>مقدار</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>شناسایی مولکولی</td>
<td>14</td>
<td>13</td>
<td>0.8</td>
<td>بیشتر</td>
</tr>
</tbody>
</table>
تجزیه ارتباط برخی از پارامترهای یافته در گند نان با استفاده از اِشکاکره‌های ISSR

محدوده ارتباط برخی از پارامترهای یافته در گند نان با استفاده از اِشکاکره‌های ISSR

جدول 5- آماره‌های جدید شکل حاوی 20 ویژگی اشکاکره‌های ISSR

Table 5. Multivariate statistics from 20 wheat genotypes using ISSR markers

جدول 6- مبتنی شکل حاوی 20 ویژگی اشکاکره‌های ISSR

Table 6. Maximum likelihood estimation based on STRUCTURE software

ISRR
Table 7. Markers have a significant relationship with Finley and Wilkinson regression coefficients

<table>
<thead>
<tr>
<th>R² adjusted</th>
<th>R² changed</th>
<th>P-value</th>
<th>(B) UBC-869</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.788</td>
<td>0.773</td>
<td>.......</td>
<td>-</td>
</tr>
<tr>
<td>0.761</td>
<td>0.777</td>
<td>.......</td>
<td>I5</td>
</tr>
<tr>
<td>0.737</td>
<td>0.781</td>
<td>.......</td>
<td>I5</td>
</tr>
<tr>
<td>0.635</td>
<td>0.689</td>
<td>.......</td>
<td>UBC-8463</td>
</tr>
<tr>
<td>0.623</td>
<td>0.694</td>
<td>.......</td>
<td>I6</td>
</tr>
<tr>
<td>0.610</td>
<td>0.697</td>
<td>.......</td>
<td>UBC-867</td>
</tr>
<tr>
<td>0.598</td>
<td>0.693</td>
<td>.......</td>
<td>I11</td>
</tr>
</tbody>
</table>

Table 8. Significant relationships with Perkins and Jinx regression coefficients

<table>
<thead>
<tr>
<th>R² adjusted</th>
<th>R² changed</th>
<th>P-value</th>
<th>(B) UBC-869</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.788</td>
<td>0.773</td>
<td>.......</td>
<td>-</td>
</tr>
<tr>
<td>0.761</td>
<td>0.777</td>
<td>.......</td>
<td>I5</td>
</tr>
<tr>
<td>0.737</td>
<td>0.781</td>
<td>.......</td>
<td>I5</td>
</tr>
<tr>
<td>0.635</td>
<td>0.689</td>
<td>.......</td>
<td>UBC-8463</td>
</tr>
<tr>
<td>0.623</td>
<td>0.694</td>
<td>.......</td>
<td>I6</td>
</tr>
<tr>
<td>0.610</td>
<td>0.697</td>
<td>.......</td>
<td>UBC-867</td>
</tr>
<tr>
<td>0.598</td>
<td>0.693</td>
<td>.......</td>
<td>I11</td>
</tr>
</tbody>
</table>
تجزیه ارتباط برخی از بارانش‌های پایداری در گندم‌های نان با استفاده از نشانگرهای ISSR

جدول 9- نشانگرهای دارای رابطه معنی‌دار با شاخص میزان تغییرات سازگاری هندسی

<table>
<thead>
<tr>
<th>R² adjusted</th>
<th>R² changed</th>
<th>P-value</th>
<th>ضریب رگرسیون (B)</th>
<th>نام شناسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.737</td>
<td>0.737</td>
<td>0.001</td>
<td>-0.050</td>
<td>I13</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
<tr>
<td>0.628</td>
<td>0.628</td>
<td>0.001</td>
<td>-0.030</td>
<td>I14</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
</tbody>
</table>

امام MBIW 65 مکان تکنیکی شده با این آماره ارتباط پذیری داشتند (جدول 11). این آماره هم شاخص آماره پایداری و پایداری با دو مکان تکنیکی همبستگی معنی‌داری نشان داد و 56 درصد از تغییرات مربوط به باaranش‌های پایداری توسط این دو مکان توجه شد (جدول 12).

جدول 10- نشانگرهای دارای رابطه معنی‌دار با آماره MBIW

<table>
<thead>
<tr>
<th>R² adjusted</th>
<th>R² changed</th>
<th>P-value</th>
<th>ضریب رگرسیون (B)</th>
<th>نام شناسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.737</td>
<td>0.737</td>
<td>0.001</td>
<td>-0.050</td>
<td>I13</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
<tr>
<td>0.628</td>
<td>0.628</td>
<td>0.001</td>
<td>-0.030</td>
<td>I14</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
<tr>
<td>0.562</td>
<td>0.562</td>
<td>0.001</td>
<td>-0.040</td>
<td>I14</td>
</tr>
</tbody>
</table>

جدول 11- نشانگرهای دارای رابطه معنی‌دار با آماره باaranش‌های پایداری پایداری و پایداری

جدول 12- نشانگرهای دارای رابطه معنی‌دار با آماره باaranش‌های پایداری و پایداری

Table 9. Markers have a significant relationship with the index of Geometric Compatibility

Table 10. Markers with significant relationship with MBIW statistics

Table 11. Markers with significant relationship with the Pewfo and Luttio stability statistics

Table 12. Significant relationship with shukla stability variance

Table 13. Significant relationship with genotype variation coefficient

امام MBIW 65 درصد و پایداری شوکلا این آماره هم شاخص آماره پایداری و پایداری با دو مکان تکنیکی همبستگی معنی‌داری نشان داد و 56 درصد از تغییرات مربوط به باaranش‌های پایداری توسط این دو مکان توجه شد (جدول 12).
جدول 14- شناسگرهای دارای رابطه معنادار با شاخص برتری لین و بینز

<table>
<thead>
<tr>
<th>R (ادusted)</th>
<th>R (changed)</th>
<th>P-value</th>
<th>ضریب رگرسیون</th>
<th>نام شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3541/0</td>
<td>0.205/0</td>
<td>-</td>
<td>0.653/0</td>
<td>UBC-864</td>
</tr>
<tr>
<td>0.324/0</td>
<td>0.216/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is15</td>
</tr>
<tr>
<td>0.327/0</td>
<td>0.214/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is10</td>
</tr>
<tr>
<td>0.328/0</td>
<td>0.213/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is5</td>
</tr>
<tr>
<td>0.329/0</td>
<td>0.212/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is9</td>
</tr>
<tr>
<td>0.330/0</td>
<td>0.211/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is11</td>
</tr>
<tr>
<td>0.331/0</td>
<td>0.210/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is7</td>
</tr>
</tbody>
</table>

جدول 15- شناسگرهای دارای رابطه معنادار با ضریب تشخیص

<table>
<thead>
<tr>
<th>R (adjusted)</th>
<th>R (changed)</th>
<th>P-value</th>
<th>ضریب رگرسیون</th>
<th>نام شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3541/0</td>
<td>0.205/0</td>
<td>-</td>
<td>0.653/0</td>
<td>UBC-864</td>
</tr>
<tr>
<td>0.324/0</td>
<td>0.216/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is15</td>
</tr>
<tr>
<td>0.327/0</td>
<td>0.214/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is10</td>
</tr>
<tr>
<td>0.328/0</td>
<td>0.213/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is5</td>
</tr>
<tr>
<td>0.329/0</td>
<td>0.212/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is9</td>
</tr>
<tr>
<td>0.330/0</td>
<td>0.211/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is11</td>
</tr>
<tr>
<td>0.331/0</td>
<td>0.210/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is7</td>
</tr>
</tbody>
</table>

جدول 16- شناسگرهای دارای رابطه معنادار با واریانس محیطی

<table>
<thead>
<tr>
<th>R (adjusted)</th>
<th>R (changed)</th>
<th>P-value</th>
<th>ضریب رگرسیون</th>
<th>نام شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3541/0</td>
<td>0.205/0</td>
<td>-</td>
<td>0.653/0</td>
<td>UBC-864</td>
</tr>
<tr>
<td>0.324/0</td>
<td>0.216/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is15</td>
</tr>
<tr>
<td>0.327/0</td>
<td>0.214/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is10</td>
</tr>
<tr>
<td>0.328/0</td>
<td>0.213/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is5</td>
</tr>
<tr>
<td>0.329/0</td>
<td>0.212/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is9</td>
</tr>
<tr>
<td>0.330/0</td>
<td>0.211/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is11</td>
</tr>
<tr>
<td>0.331/0</td>
<td>0.210/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is7</td>
</tr>
</tbody>
</table>

جدول 17- شناسگرهای دارای رابطه معنادار با شاخص ایمنی- اول

<table>
<thead>
<tr>
<th>R (adjusted)</th>
<th>R (changed)</th>
<th>P-value</th>
<th>ضریب رگرسیون</th>
<th>نام شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3541/0</td>
<td>0.205/0</td>
<td>-</td>
<td>0.653/0</td>
<td>UBC-864</td>
</tr>
<tr>
<td>0.324/0</td>
<td>0.216/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is15</td>
</tr>
<tr>
<td>0.327/0</td>
<td>0.214/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is10</td>
</tr>
<tr>
<td>0.328/0</td>
<td>0.213/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is5</td>
</tr>
<tr>
<td>0.329/0</td>
<td>0.212/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is9</td>
</tr>
<tr>
<td>0.330/0</td>
<td>0.211/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is11</td>
</tr>
<tr>
<td>0.331/0</td>
<td>0.210/0</td>
<td>-</td>
<td>0.664/0</td>
<td>Is7</td>
</tr>
</tbody>
</table>
جدول 18- توانایی اندازه‌گیری یاروسازی وابستگی با وابستگی‌های معنی‌دار در رگرسیون

| R^2 adjusted | R^2 changed | P-value | بیان نشانگر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.771</td>
<td>0.742</td>
<td>0.000</td>
<td>UBC-869</td>
</tr>
<tr>
<td>0.639</td>
<td>0.615</td>
<td>0.000</td>
<td>UBC-848</td>
</tr>
<tr>
<td>0.562</td>
<td>0.521</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.522</td>
<td>0.485</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.213</td>
<td>0.191</td>
<td>0.000</td>
<td>I9</td>
</tr>
<tr>
<td>0.209</td>
<td>0.188</td>
<td>0.000</td>
<td>UBC-857</td>
</tr>
</tbody>
</table>

جدول 19- توانایی اندازه‌گیری یاروسازی وابستگی با وابستگی‌های معنی‌دار در رگرسیون

| R^2 adjusted | R^2 changed | P-value | بیان نشانگر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.777</td>
<td>0.742</td>
<td>0.000</td>
<td>UBC-869</td>
</tr>
<tr>
<td>0.639</td>
<td>0.615</td>
<td>0.000</td>
<td>UBC-848</td>
</tr>
<tr>
<td>0.562</td>
<td>0.521</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.522</td>
<td>0.485</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.213</td>
<td>0.191</td>
<td>0.000</td>
<td>I9</td>
</tr>
<tr>
<td>0.209</td>
<td>0.188</td>
<td>0.000</td>
<td>UBC-857</td>
</tr>
</tbody>
</table>

جدول 20- توانایی اندازه‌گیری یاروسازی وابستگی با وابستگی‌های معنی‌دار در رگرسیون

| R^2 adjusted | R^2 changed | P-value | بیان نشانگر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.777</td>
<td>0.742</td>
<td>0.000</td>
<td>UBC-869</td>
</tr>
<tr>
<td>0.639</td>
<td>0.615</td>
<td>0.000</td>
<td>UBC-848</td>
</tr>
<tr>
<td>0.562</td>
<td>0.521</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.522</td>
<td>0.485</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.213</td>
<td>0.191</td>
<td>0.000</td>
<td>I9</td>
</tr>
<tr>
<td>0.209</td>
<td>0.188</td>
<td>0.000</td>
<td>UBC-857</td>
</tr>
</tbody>
</table>

جدول 21- توانایی اندازه‌گیری یاروسازی وابستگی با وابستگی‌های معنی‌دار در رگرسیون

| R^2 adjusted | R^2 changed | P-value | بیان نشانگر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.777</td>
<td>0.742</td>
<td>0.000</td>
<td>UBC-869</td>
</tr>
<tr>
<td>0.639</td>
<td>0.615</td>
<td>0.000</td>
<td>UBC-848</td>
</tr>
<tr>
<td>0.562</td>
<td>0.521</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.522</td>
<td>0.485</td>
<td>0.000</td>
<td>I5</td>
</tr>
<tr>
<td>0.213</td>
<td>0.191</td>
<td>0.000</td>
<td>I9</td>
</tr>
<tr>
<td>0.209</td>
<td>0.188</td>
<td>0.000</td>
<td>UBC-857</td>
</tr>
</tbody>
</table>

نتایج مطالعه حاضر و تحقیقات ذکر شده نشان می‌دهد که یافته‌های ارتباطی با وابستگی معنی‌دار یا با وابستگی معنی‌دار در قلم‌ریزی از این وابستگی‌ها داشته باشند. این نتایج نشان می‌دهد که ارتباط بین وابستگی معنی‌دار یا با وابستگی معنی‌دار در قلم‌ریزی از این وابستگی‌ها داشته باشند. این نتایج نشان می‌دهد که ارتباط بین وابستگی معنی‌دار یا با وابستگی معنی‌دار در قلم‌ریزی از این وابستگی‌ها داشته باشند. این نتایج نشان می‌دهد که ارتباط بین وابستگی معنی‌دار یا با وابستگی معنی‌دار در قلم‌ریزی از این وابستگی‌ها داشته باشد. این نتایج نشان می‌دهد که ارتباط بین وابستگی معنی‌دار یا با وابستگی معنی‌دار در قلم‌ریزی از این وابستگی‌ها داشته باشد.
متن مقالات:

تجزیه ارتباط بیش از یک ماده در کمپرسیون عاملی با استفاده از نشانگر
ISSR

Association Analysis for Stability Parameters in Bread Wheat Using ISSR Markers

Anita Yaghotipoor¹, Ezatollah Farshadfar² and Mohsen Saeidi³

1 and 3- PhD Student, Associate Professor, College of Agriculture, Razi University, Kermanshah
2- Professor, College of Agriculture, Razi University, Kermanshah
(Corresponding author: e_farshadfar@yahoo.com)
Received: July 5, 2016 Accepted: July 1, 2017

Abstract
Intersimple sequence repeat (ISSR) markers were evaluated in order to identify informative markers associated with drought tolerance indices in bread wheat (Triticum aestivum L.) genotypes. Eighteen ISSR primers amplified 92 loci among 20 bread wheat genotypes. Polymorphic information content (PIC) ranged from 0.46 (UBC-857, UBC-864, UBC-867, is9) to 0.21 (is7), with an average of 2.05. Stepwise regression analysis between molecular data as independent variable, and parametric stability statistics as dependent variables was performed to identify informative markers associated with the parametric stability statistics. Most of the used ISSR primers showed significant association with the parametric stability statistics. Stability statistics included Finlay and Wilkinson's coefficient of regression, Perkins and Jinks's coefficient of regression, MBIW, Lin and Binns's superiority index, SFi and NP(²), were explained by more primers. ISSR markers, UBC-848, UBC-869 and is5 showed the most association with stability statistics. It is possible to use these markers along with stability statistics in wheat breeding programs for identification of stable genotypes and suitable parents to produce mapping populations. Also, these results could be useful in marker-assisted breeding programs when no other genetic information is available. Some of ISSR markers were associated with more than one trait in multiple regression analysis. Such an association may arise due to pleiotropic effect of the linked quantitative trait locus (QTL) on different traits.

Keywords: Association analysis, Bread wheat, ISSR markers, Parametric stability, Statistics