گروه‌بندی زنوتیپ‌های پیشرفت و گذشته گذمه په اطراف تحت شرایط بدون نش و نش خشکی

دادر داعی الحق، و رحمت رضیه، سعیدی هراری، فرهاد فرحون و پریسرکاری

چکیده

یکی از منظوره‌های زنوتیپ‌های پیشرفت و گذشته گذمه په اطراف تحت شرایط بدون نش و نش خشکی می‌باشد. ۳۰ نمونه گند به‌صورت دو دسته گروهی به‌کار رفته و در حالی که محصولات و سیستم‌های مختلفی مانند میکروب‌های گلیسک‌ها و تغییرات آنها هر دو یکی از عوامل اصلی افزایش نرخ شرایط بدون نش و نش خشکی است، بررسی تغییرات محیطی در این دسته‌گروه‌ها به‌عنوان یکی از عوامل مؤثر توجه باید شد.

مقدمه

گند به‌عنوان یکی از مهم‌ترین محصولات زراعی و تأمین‌کننده گلیسک‌های حداکثر جمعیت چهارت، نقش مهمی در اثری به‌عنوان گفت و نهایت از اقدامات جامعه برای کنترل بیماری‌ها و بهبود شرایط بی‌درنگی دارد. این موضوع مهم می‌باشد که نتایج یافته‌ها تاکید کنند که افزایش نرخ شرایط بدون نش و نش خشکی در سایر محیط‌های کشاورزی باید توجه شود.

در این مقاله، به بررسی تاثیرات محیطی در گروه‌بندی زنوتیپ‌های پیشرفت و گذشته گذمه په اطراف تحت شرایط بدون نش و نش خشکی، توجه شده است. بررسی این تاثیرات به‌عنوان یکی از عوامل مؤثر در کنترل بیماری‌ها و بهبود شرایط بی‌درنگی در سایر محیط‌های کشاورزی باید توجه شود.
گروه‌های زیتون‌های پیش‌رفته گندبی به‌دست‌آورده‌شده برای حفاظت از این انسان‌ها از عوارض وعیان‌ریزی تهیه شده که می‌تواند نتایجی را داشته باشد. این گروه‌ها به‌وسیله ژنتیکی نیز می‌تواند نتایجی را داشته باشد. این گروه‌های زیتون‌های پیش‌رفته گندبی به‌دست‌آورده‌شده برای حفاظت از این انسان‌ها از عوارض وعیان‌ریزی تهیه شده که می‌تواند نتایجی را داشته باشد.
Table 1. The name of wheat genotypes in experiment

<table>
<thead>
<tr>
<th>Name of genotype</th>
<th>Percentage of yield increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERWYT-94-4</td>
<td>5</td>
</tr>
<tr>
<td>ERWYT-94-9</td>
<td>10</td>
</tr>
<tr>
<td>ERWYT-94-10</td>
<td>15</td>
</tr>
<tr>
<td>ERWYT-94-2</td>
<td>20</td>
</tr>
<tr>
<td>ERWYT-94-3</td>
<td>25</td>
</tr>
<tr>
<td>ERWYT-94-4</td>
<td>30</td>
</tr>
<tr>
<td>ERWYT-94-5</td>
<td>35</td>
</tr>
<tr>
<td>ERWYT-94-6</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: The data was obtained using the Excel 2019 software.

References:
جدول ۲- تجزیه واریانس مربوط صفای مورد ارزیابی در زنوتیپ‌های یپشرفت گندم بهاره تحت شرایط بدون تنش و تنش در دو سال زراعی

Table 2. Combined analysis of variance for the studied traits in advanced spring wheat under non-stress and stress conditions in two crop years

شاخص برداشت	ارتفاع بونه (سانتی‌متر)	وزن گرم در واحد (آمایشی)	طول پاناس (سانتی‌متر)	وزن هزار دانه (گرم)	مطلق دانه (گرم در واحد (آمایشی)	درجه آرایی	سال	شرایط ابزار	نتایج
سال ۱	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
زنوتیپ	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
سال ۱	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
زنوتیپ	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
سال ۱	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
زنوتیپ	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
سال ۱	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
زنوتیپ	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
سال ۱	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**
زنوتیپ	۱۸۰/۱۹**	۲۸۴/۱۹**	۱۸۰/۱۹**	۹۵/۸۱**	۴/۵۱**	۷۸/۶۶**	۱۸۱/۱۹**	۲۳۷/۱۹**	۲۳۷/۱۹**

** نتایج بهبود یافته یا مشابه گیپ
* نتایج بهبود یافته و غیر معنی‌دار
ns نتایج نامناسب و غیر معنی‌دار

درصد تغییرات

۱۰۰% (درصد)
جدول 3: میانگین زیستیهای مورد مطالعه از نظر سمات مواد ارزیابی تحت شرایط بدون نیازی خشکی در دو سال زراعی

| شاخص برتند | ارزش امتیاز (درصد) | وزن هزار نان (گرم) | سطح در (گرم در آزمایش) | عمومی دانه | اسیر زیستی | شماره | زیستی
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ارزش امتیاز</td>
<td>88.64</td>
<td>44.55</td>
<td>33.23</td>
<td>36.32</td>
<td>42.84</td>
<td>1</td>
<td>18.67</td>
</tr>
<tr>
<td>وزن هزار نان</td>
<td>51.25</td>
<td>55.80</td>
<td>45.04</td>
<td>40.32</td>
<td>81.00</td>
<td>2</td>
<td>81.00</td>
</tr>
<tr>
<td>سطح در</td>
<td>12.88</td>
<td>8.64</td>
<td>12.88</td>
<td>12.88</td>
<td>12.88</td>
<td>3</td>
<td>12.88</td>
</tr>
<tr>
<td>اسیر زیستی</td>
<td>35.25</td>
<td>35.25</td>
<td>35.25</td>
<td>35.25</td>
<td>35.25</td>
<td>5</td>
<td>35.25</td>
</tr>
</tbody>
</table>

% LSD ٤٨
جدول 4- میانگین زنوتیپ‌های محور مطالعه از نظر صفات مورد ارزیابی تحت شرایط نشاط خشکی در دو سال زراعی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>افزایش پهناوری یافته‌های غربالی (آبرسانی)</th>
<th>پیش‌بینی یافته‌های غربالی</th>
<th>متوسط یافته‌های غربالی</th>
<th>شاخص یافته‌های غربالی</th>
<th>شاخص یافته‌های غربالی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44/37</td>
<td>42/36</td>
<td>43/37</td>
<td>41/36</td>
<td>43/37</td>
</tr>
<tr>
<td>2</td>
<td>05/32</td>
<td>04/32</td>
<td>05/33</td>
<td>03/32</td>
<td>05/33</td>
</tr>
<tr>
<td>3</td>
<td>76/37</td>
<td>74/36</td>
<td>77/38</td>
<td>75/37</td>
<td>76/38</td>
</tr>
<tr>
<td>4</td>
<td>96/38</td>
<td>94/37</td>
<td>97/39</td>
<td>95/38</td>
<td>96/39</td>
</tr>
<tr>
<td>5</td>
<td>66/35</td>
<td>64/34</td>
<td>67/36</td>
<td>65/35</td>
<td>67/36</td>
</tr>
<tr>
<td>6</td>
<td>36/33</td>
<td>34/32</td>
<td>37/34</td>
<td>35/33</td>
<td>37/34</td>
</tr>
<tr>
<td>7</td>
<td>26/32</td>
<td>24/31</td>
<td>27/33</td>
<td>25/32</td>
<td>27/33</td>
</tr>
<tr>
<td>8</td>
<td>16/31</td>
<td>14/30</td>
<td>17/32</td>
<td>15/31</td>
<td>17/32</td>
</tr>
<tr>
<td>9</td>
<td>06/30</td>
<td>04/29</td>
<td>07/31</td>
<td>05/28</td>
<td>07/31</td>
</tr>
<tr>
<td>10</td>
<td>60/32</td>
<td>58/31</td>
<td>61/33</td>
<td>59/32</td>
<td>61/33</td>
</tr>
<tr>
<td>11</td>
<td>40/31</td>
<td>38/30</td>
<td>41/32</td>
<td>39/31</td>
<td>41/32</td>
</tr>
<tr>
<td>12</td>
<td>20/29</td>
<td>18/28</td>
<td>21/30</td>
<td>19/27</td>
<td>21/30</td>
</tr>
<tr>
<td>13</td>
<td>00/28</td>
<td>02/27</td>
<td>01/29</td>
<td>03/26</td>
<td>01/29</td>
</tr>
<tr>
<td>14</td>
<td>80/29</td>
<td>82/28</td>
<td>81/29</td>
<td>83/27</td>
<td>81/29</td>
</tr>
<tr>
<td>15</td>
<td>60/28</td>
<td>62/27</td>
<td>61/29</td>
<td>63/26</td>
<td>61/29</td>
</tr>
</tbody>
</table>

پیووشه‌ام اصلاح گیاهان زراعی/ سال دوازدهم/ شماره ۳۳/ تابستان ۱۳۹۹
جدول 5: میانگین زننی‌های مورد مطالعه از نظر برخی صفات مورد ارزیابی تحت شرایط دردو سال زراعی

<table>
<thead>
<tr>
<th>اسامی زوننی‌های مورد مطالعه</th>
<th>طول بالا/کالک (سانتی‌متر)</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBWYT-94-6</td>
<td>15</td>
<td>1</td>
<td>ERWYT-94-7</td>
<td>17</td>
<td>ERWYT-94-8</td>
<td>9</td>
<td>ERWYT-94-9</td>
<td>11</td>
<td>ERWYT-94-10</td>
<td>22</td>
<td>ERWYT-94-11</td>
<td>11</td>
</tr>
<tr>
<td>420</td>
<td>24</td>
<td>3</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
</tr>
<tr>
<td>434</td>
<td>4</td>
<td>2</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
</tr>
</tbody>
</table>

تجزیه خوشه‌ای

جدول 6: میانگین صفات مورد ارزیابی تحت شرایط بدون تنش خشکی در دو سال زراعی

<table>
<thead>
<tr>
<th>اسامی زوننی‌های مورد مطالعه</th>
<th>طول بالا/کالک (سانتی‌متر)</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBWYT-94-6</td>
<td>15</td>
<td>1</td>
<td>ERWYT-94-7</td>
<td>17</td>
<td>ERWYT-94-8</td>
<td>9</td>
<td>ERWYT-94-9</td>
<td>11</td>
<td>ERWYT-94-10</td>
<td>22</td>
<td>ERWYT-94-11</td>
<td>11</td>
</tr>
<tr>
<td>420</td>
<td>24</td>
<td>3</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
<td>440</td>
<td>4</td>
</tr>
<tr>
<td>434</td>
<td>4</td>
<td>2</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
<td>441</td>
<td>4</td>
</tr>
</tbody>
</table>
وی می‌تواند توانایی در حالی که گروه‌های دیگر بیشتر برود، گروه‌های دیگر و همچنین مقادیر ضرایب، وزه و سهم هر نتیجه از کل نتایج مبتنی بر گروه نسبت به حالی گروه ترکیبی داده شده شد. این نتایج به دو نتیجه که گروه‌بندی ده‌ها در سه جهته به سر می‌آیند. زننده‌های این نتایج به سه گروه نیز می‌توانند تجزیه تابع تشخص بود.

شکل 1- دندوگرام حاصل از تجزیه خوش‌های بروش وارد در زننده‌های بیشتری گند بهتر بر اساس صفات مورد ارزیابی تحت شرایط

در حال محل‌ی شکل (دندوگرام) بهترین گونه‌ها در دو سال ارزیابی است. نتایج گروه‌بندی در جدول 6 تا 28 نمایان می‌شود که این نتایج تجزیه تابع تشخص بود.

جدول 6- میانگین گروه‌ها و مقدار انحراف آنها از میانگین کل بر اساس صفات مورد ارزیابی در زننده‌های بیشتری گند بهتر تحت شرایط

<table>
<thead>
<tr>
<th>گروه</th>
<th>میانگین</th>
<th>مقدار انحراف</th>
<th>میانگین (کمربند گه‌های کل)</th>
<th>مقدار اتفاق (کمربند گه‌های کل)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>0.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول 7- تجزیه کانونی برای تعیین محل برش دندوگرام حاصل از تجزیه خوش‌های بر اساس صفات مورد ارزیابی تحت شرایط

<table>
<thead>
<tr>
<th>گروه</th>
<th>کمربند</th>
<th>پایکس</th>
<th>سطح مناسب</th>
<th>تعداد گروه‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>4</td>
</tr>
</tbody>
</table>

نتایج حاصل از حساب انحراف با بیشترین گونه‌ها به سه گروه نیز می‌توانند تجزیه تابع تشخص بود.
جدول 8- مقادیر ویژه، واریانس تجمعی و همگنسی کانونیکال بر اساس صفات مورد ارزیابی تحت شرایط بدون نشت و نشت خشکی

| بانک | همگنسی کانونیکال | واریانس تجمعی | واریانس | مقادیر ویژه | تابع تنها
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>842 / 843</td>
<td>92 / 94</td>
<td>987 / 96</td>
<td>22 / 26</td>
<td>1 / 1</td>
</tr>
<tr>
<td>2</td>
<td>87 / 897</td>
<td>6 / 844</td>
<td>983 / 0</td>
<td>9 / 90</td>
<td>2 / 2</td>
</tr>
</tbody>
</table>

ب) تجزیه خوش‌های زنوتی‌های مورد مطالعه بر اساس کلیه صفات مورد ارزیابی تحت شرایط تشن خشکی در دو سال زراعی

تجزیه خوش‌های در شرایط تشن خشکی بر اساس کلیه صفات مورد مطالعه در دو سال زراعی انجام شد و نتایج آن سال در دو سال زراعی در دو سال زراعی با توجه به دو سال زراعی در دو سال زراعی...

1 21/28 6/97 6/97 983/0

2 683/0 4/2 100 637/0

63

1

4

8

14

20

247

9

2

9

94

94

94

94

94

94

94

94
جدول 9- میانگین گروه‌ها و درصد و مقدار انحراف آنها از میانگین کل بر اساس صفات مورد ارزیابی در زعین‌های پیش‌رفته کندم بهار تحت شرایط تنش خشکی در دو سال زراعی

<table>
<thead>
<tr>
<th>صفت</th>
<th>گروه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>میانگین</td>
</tr>
<tr>
<td>پوسته (گرم)</td>
<td>3/257</td>
</tr>
<tr>
<td>طول یانکی (سانتی‌متر)</td>
<td>33/2/63</td>
</tr>
<tr>
<td>وزن هزار کیلوگرم</td>
<td>33/2/63</td>
</tr>
<tr>
<td>تعداد دانه در گرم</td>
<td>5/6/7</td>
</tr>
<tr>
<td>تعداد دانه در سانتی‌متر</td>
<td>5/6/7</td>
</tr>
<tr>
<td>وزن کیلوگرم</td>
<td>5/6/7</td>
</tr>
<tr>
<td>طول اکسترمین</td>
<td>5/6/7</td>
</tr>
</tbody>
</table>

Table 9. Mean and percent and amount of deviation of groups from the total average based on studied traits in advanced spring wheat genotypes under drought stress condition in two crop years.
جدول 10- تابع تشخیص کانونیک برای تعیین محل برش دندوگرام حاصل از تجزیه خوش‌باور بر اساس صفات مورد ارزیابی تحت شرایط تنش خشکی در دو سال زراعی

<table>
<thead>
<tr>
<th>تعداد گروه‌ها</th>
<th>دو</th>
<th>سه</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح میان‌دایا</td>
<td>0/75</td>
<td>0/93</td>
</tr>
<tr>
<td>ویژگی‌های لایه‌ای</td>
<td>0/69</td>
<td>0/49</td>
</tr>
</tbody>
</table>

جدول 11- مقدار ویژه واریانس، واریانس جمعی و همبستگی کانونیکال بر اساس صفات مورد ارزیابی تحت شرایط تنش خشکی در دو سال زراعی

<table>
<thead>
<tr>
<th>تابع تشخیص</th>
<th>مقدار ویژه</th>
<th>واریانس جمعی</th>
<th>همبستگی کانونیکال</th>
<th>واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/644</td>
<td>7/96</td>
<td>0/6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>16/34</td>
<td>8/644</td>
<td></td>
</tr>
</tbody>
</table>

شکل 2- دندوگرام حاصل از تجزیه خوش‌باور به روش وارد در زنوتیپ‌های پیشرفتی گندم به‌پایه بر اساس صفات مورد ارزیابی تحت شرایط تنش خشکی در دو سال زراعی

Figure 2. Dendrogram of cluster analysis by Ward method in advanced spring wheat genotypes based on studied traits under drought stress condition in two crop years
بهطور کلی تکنیک حاضل از این پژوهش نشان داد که بین
ژنوتیپ‌های مورد مطالعه و بهترین کارایی در مقطع اصلی
این ارائه ذهنیات و دستیابی به روش مشابه در
ارتجاع بوده، نشان و همگامی در
سطح اصلی % و % با یکدیگر که در این دست
واکنش‌های متناوب زنوتیپ‌های مورد مطالعه از نظر این
سطح در شرایط مختلف ایبایی می‌باشد. برهمکنش سنجش
سال × شرایط آبیاری × نیز از نظر هم صفات مورد
ارزیابی در سطح اصلی % و % معنی‌دار بود که جایگزین
واکنش متناوب زنوتیپ‌ها به نشان خشکی در دو انتای
می‌باشد. با توجه به نتایج حاصل از تجزیه خودش،
واکنش مورد مطالعه در آرزایی
سال × شرایط آبیاری × نیز در مقطع اصلی
در سطح اصلی % و % معنی‌دار بود که جایگزین
واکنش متناوب زنوتیپ‌ها به نشان خشکی در دو
کرد. در شرایط نشان خشکی گروه کامل طبیعی
ژنوتیپ‌های درا، شیروی، سرت. ERWYT-94-7 و ERWYT-94-4
بود که از نظر تمام صفات به غیر از نشان برداشت

متایب
Classification of Advanced Spring Wheat Genotypes under Non-Stress and Drought Stress Conditions

Davood Daei Alhag¹, Varahram Rashidi², Saeed Aharizad⁴, Farhad Farahvash³ and Bahram Mirshekari³

1- Ph.D. Student of Plant Breeding, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch
2- Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, (Corresponding Author: rash270@yahoo.com)
3- Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch
4- Professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz

Received: November 17, 2019 Accepted: June 13, 2020

Abstract

In order to study grouping of advanced spring wheat genotypes under non-stress and drought stress conditions (stop irrigation in the stage of the emergence of 50% inflorescence of each experimental unit), 28 genotypes were evaluated in 2016-2017 and 2017-2018 cropping year in two separate experiments with a randomized complete block design with three replications in the research field of Islamic Azad University of Tabriz. Combined analysis of variance revealed a statistically significant difference between studied genotypes for all traits (P<0.01). Genotype × condition interaction was significant for seed yield, number of seeds in spike, plant height, harvest index in 5% probability level and 1000 seed weight and biomass in 1% probability level. The results of the present study showed that studied genotypes had different reactions in different environmental conditions for these traits. However, Genotype × condition interaction was not significant for number of spike, length of spike and length of peduncle. Cluster analysis classified genotypes based on all studied traits into two groups under non-stress and drought stress conditions. Results of the discrimination function analysis confirmed this grouping. Under non-stress condition the first group includes Darya, Shiroodi, ERWYT-94-4, Roshan, ERWYT-94-7, URBWYT-94-2, URBWYT-94-4 genotypes, which mean of all traits except harvest index were higher than the total mean. Overall, results indicate that the first group was the superior group. Under drought stress condition the second group includes Darya, Shiroodi, Afrab, URBWYT-94-3, ERWYT-94-4, URBWYT-94-6, Roshan, ERWYT-94-7, URBWYT-94-7, URBWYT-94-8, URBWYT-94-9, URBWYT-94-10, URBWYT-94-2, URBWYT-94-4, which mean of all traits were higher than the total mean. The best genotypes for both cluster analyses under both non-stress and drought stress conditions, were genotypes of Darya, Shiroudi, Roshan, URBWYT-94-2, URBWYT-94-4, ERWYT-94-4 and ERWYT-94-7.

Keywords: Cluster Analysis, Stress, Wheat