بررسی نقش ذهن گلوتامین سینتئاز طی مراحل رشد کلزا تحت شرایط تنش خشکی

س. نواب پور و ر. حداد

چکیده

به منظور ارزیابی تأثیر سطوح تنش خشکی بر بالگو بیان ذهن گلوتامین سینتئاز به همراه پروتئین و کلروفیل و شاخص سطح اکسیداسیون سلولی مطالعه ای رود گیاه کلزا (نام فارسی) در شرایط مختلف تنش خشکی شامل مقدار عامل آبیاری برای حصول پتانسیل فعالیت زراعی (FC) به عنوان شاهد لحاظ گردید. اعمال تیمارهای تنش زمان انتقال گیاهان پس از یهاره سازی به فاصله انجام شد. به منظور افزایش دقت از طرح آماری بلوک های کامل تصادفی با 4 تکرار استفاده شد. نمونه برداری تصادفی از برگ در مراحل مختلف رشد شامل ساقه دهه، گلدهی، غلاف پنی و رحمی و نیز تحریری قبیل انجام شد. همچنین نمونه برداری از گل های سبز و دانه در مراحل پایانی رشد صورت یافت. در مورد کلیه ی تیمارهای آزمایش میزان بیان ذهن گلوتامین سینتئاز، مقدار کلروفیل، پروتئین و نشان داد تأثیری تنش خشکی و سن گیاه میزان پروتئین و کلروفیل عموما کاهش دیده. در اغلب مراحل رشد تفاوت معنی داری بین میزان پروتئین و برای تیمارهای شاهد. میزان شاخص اکسیداسیون TBARM با افزایش تنش خشکی افزایش یافت. میزان تنش خشکی افزایش یافت. میزان سلولی ذهن گلوتامین سینتئاز در برگ تحت تأثیر تنش خشکی تا مرز تیمار 1-3 افزایش و پس از آن عموما کاهش نشان داد. میزان بیان ذهن ژن در درک و دانه در شرایط تیماری مورد مطالعه کمتر از برگ بود.

واژه های کلیدی: کلزا، تنش خشکی، پروتئین، کلروفیل، ذهن گلوتامین سینتئاز

مقدمه

کلزا از مهمترین دانه های روانی شناخته می شود که حدود ۱۷ درصد از تولید شده می باشد. چهارده دانه نباتی را تأمین می نماید. روغن کلزا در مقایسه با سایر روغن های ممتاز نظیر آفتابگردان، ذرت و سویا به دلیل وجود

جهانی روغن نباتی را تأمین می نماید. روغن کلزا در مقایسه با سایر روغن های ممتاز نظیر آفتابگردان، ذرت و سویا به دلیل وجود
مقدار معینی تنش آب در خاک، لازماً همان مقدار نشان رد در گیاه ایجاد نخواهد کرد. این تفاوت بعضاً عواملی مانند مقاومت جریان آب در خاک، مقاومت روندی و مهمرت از همه مقاومت در برابر حرکت آب در ریشه ها و سایر بافت ها می باشد. تاثیر گذاری عامل دیگری هم، فاکتورهای مصرفی و ساختار زئیتیکی بستگی دارد. بنابراین اگر این که پتانسیل زئیتیکی از راه و تلاش در جهت بهبود و اصلاح زئیتیکی آنها در جهت بهبود و اصلاح زئیتیکی این افراد نشان دهنده از فعالیت و وجود اثر زئها در حصول موفقیت برنامه های اصلاحی ضروری است. محققان زن گلیتامین سینتیتاز پروپتیا با فعالیت آنزیمی است. این آنزیم دارای ایزوفرماهای مختلفی منشأ به اجزای سلولی بوده که دارای نقش اختصاصی هستند (۹ و ۱۷). در سلولهای گیاهی اغلب دو ایزوفرم گلیتامین سینتیتاز گزارش شده است. نوع اول گلیتامین سینتیتازی (GSC) و نوع دوم در گلیتامین (GSL) که در کلروپلاست بیان می شود. فعالیت هر دو انرژی است. در شیب بستگی زئیتیکی کلروپلاستیک ضمین واکنش واکنش اد این و نکات نوری آنزیم باکسازی می نماید. گلیتامین سینتیتاز سینتیتازی نیز قادر به جذب آمونیاک حاصل از واکنش های ترکیب از بوته و در تجزیه و تکامل اسیدهای آمونیاک نشان دارد (۹ و ۱۹). در این تحقیق می یک بروسا اگربیا انتقال نشان داد. سینتیتاز نوری در اندامها و مراحل مخلوط رشد در گیاه کلزا تحت شرایط تنش خشکی پرداخته است.

اسبیهای چرب اشیاء نشده و فقادات کسلمترول از کیفیت بالایی بروزدار است (۱۶). کلزا گیاهی آنتی‌پاکتویک با ۱۹ چفت کرمومزوم (۳n=۳۸) می باشد. این گیاه با ۳۳۳ گیاه های خاص، سازگاری بالایی را با شرایط آب و هوا و مناطق زراعی از کشور تنان می دهد. در عین حال با توجه به اقیان خشک و نیمه خشک ی ایران و حجم وسیع واردات و حجم انعام مطالعات به روش تجربه راه‌های رشد بهره و پایین‌های می باشد. ارک افزایش تربیت‌های رشد بهره و گیاه سازی این بخش‌های افزایش تربیت بهره و پایین‌های سازی‌های این بخش‌ها یا دلیل دوره‌ی رشد کوتاه‌تر عملکرد کمتری دارند (۱۸).

بیورون تنش خشکی در گیاه زمانی حادث می شود که سرعت تروپی بیش از ۲۰ گیاه آب باشد. به عبارت دیگر تر افزایش تروپی کافی نبود دمای آب منجر به تظاهر تنش می گردد. در چنین وضعیت سلولها از حالت آماس طبیعی خارج می شوند. با تداوم تنش، پاتسیل آب در گیاه کاهشی بیشتری یافته و به دنبال آن کاهش متوسط و اختلال در فرآیندهای ترکیب‌زا و نهایت مربوط به سلولی می شود (۱۵). گیاهان زراعی از نظر طرفت جذب آب تعرق و واکنش نسبت به تنش خشکی عكس العمل متقابلی دارند. این روندی خلاف زمانی که گیاه تحت شرایط تنش خشکی قرار می گیرد بیشتر بروز می کند. فرآیندهای ترکیب‌زا و نهایت گیاهان عمداً در بار و وضعیت اب در گیاه هستند و تنها به طور غیرمستقیم تحت تأثیر تنش آب در خاک و هوا قرار می گیرند (۲). بر این اساس
پذیرفته. آبیاری کامل در حد ظرفیت زراعی (معدل 6/8 لنیتر) به عنوان شاهد انجام شد.
طرح آماری و نمودار برداری به منظور افزایش دقت از طرح آماری بلوك کامل تصادفی با 4 تكرار استفاده شد. نمونه برداری جهت محاسبه شاخص بیوشیمیایی TBARM و میزان کلروفیل به صورت ماهانه و تکرارداز انجام شد (14). همچنین نمونه برداری تصادفی و تکرارداز جهت انجام مطالعات مولکولی و بررسی بیان زن گلولومین سینتئنز نیز به طور همزمان انجام شد.

اندازه‌گیری کلروفیل
برای اندازه‌گیری میزان کلروفیل از روش پورا (14) استفاده گردید. مقدار 5/00 میزان نمونه برگ (بصورت یخ زده در -2/00 تگهداری شده) کلیاً خرد و با 1/0 میلی لیتر استون 80 درصد مخلوط شد. پس از سانتیفاز میزان جذب (A) در طول موج های 6/44 و 6/67 نانومتر توسط اسکتروفوتومتر ثبت گردید. میزان کلروفیل a و کلروفیل b و كل کلروفیل براساس فرمول های زیر محاسبه گردید (14):

\[
\text{chl}a \ (\text{mgml}^{-1}) = 12.25A663.6 - 2.55A646.6 \\
\text{chl}b \ (\text{mgml}^{-1}) = 20.31A646.6 - 4.91A663.6 \\
\text{chl} \ (\text{mgml}^{-1}) = 16.76A646.6 - 6.34A663.6 \\
\]

TBARM اندازه‌گیری
در این سنجه که معمول برای اندازه‌گیری میزان تشکیل اسیداسپونی است، شده است. همچنین روند تغییرات میزان کلروفیل و سطح اکسیداسیون سلولی ارزیابی گردیده است.

مواد و روش‌ها
بذر گیاه کلزا، واریته فالکون در شرایط (Brassica napus cv. Faclon) کشت بر روی سیک (کوارتز - ماسه - پرلیت و کوکوپس به نسبت 30:20:20 درصد) کشت در محله چهارگانگی جهت بهاره سایزی به مدت 4 هفته در دمای 4 درجه سانتی‌گراد قرار گرفت. پس از آن در شرایط گلخانه تحقیقاتی با میزان روشنایی 16 ساعت و دمای 22 درجه سانتی‌گراد در روز و 16 درجه سانتی‌گراد در شب منتقل شد. در ابتدا درهر گلدان بذری 20 کیلوگرمی سه بوته و پس از استقرار کامل به یک بوته تکن شد.

عمل تشخیصی
سطح تجمیر خشکی مشتمل بر مقادیر 5/0/5، 0/4 و 0/6 بار برحسب مقدار معادل آب مورد نیاز در تکرار های هر تیمار آبیاری گردید. میزان مقداری آب معادل در تیمار های مزبور با استفاده گیجه مقدار آب معادل در پتانسیل های مزبور به ترتیب شامل 7/5، 5/7، 4/8 و 1/1 لیتر گردید. عملیات تعمیرها از زمان انتقال گیاهان در مرحله چهار گره گی به گلخانه انجام شد. با توجه به روند رشد گیاهان آبیاری با مقادیر فوق ذکر تا مرحله آغاز گلدهی به صورت هفتگی و پس از آن دو بار در هفته بهطور ثابت صورت گرفت.

1- Thiobarbituric Acid Reactive Material
ابتدا کلون کاورگر گلوتامینسنتاز بویسه شوی سترون سافاروز خالص سازی شد. مرحله مقدماتی پیش هیبرید با قرار دادن غشای تابلویی حامل RNA در 45 درجه سانتی گراد به مدت یک شب (7% SDS، 25 OmM نتیجه سانتی گراد به مدت یک شب Sodium phosphate pH7.2)
در شیکر 65 درجه سانتی گراد انجام شد.
کاورگر تک رشته واجد فسفر رادیواکتیو RNA در محتوای دافنی به غشاء حامل افرو زده و مجددا به مدت یک شب در شیکر 65 درجه سانتی گراد قرار گرفت. غشاء را با محلول شسته و پس از خشک کردن به کاست قیم X-ray در فروری 70 کرد. در سمت نگهداری درجه سانتی گراد به مدت 24 ساعت نگهداری کرده و سپس اثر گردید.

نتیجه و بحث
روند تغییرات، میزان برونتین برگ طی مراحل نحو تحت تأثیر تنش شکلی در جدول 1 آورده شده است. همچنین میزان برونتین غلاف نسبی در مرحله ی هالنی و دانه در مرحله ی رسیدگی نیز اندازه گیری شد (جدول 1). پیشترین مقدار برونتین برگ در مرحله ی غلدی در تیمار شاد و کنترل آن در تیمار 6-9 بار در مرحله ی رسیدگی حاصل شد. در اغلب موارد تفاوت معنی داری بین میزان برونتین در تیمار شاد و تیمارهای 1- و بویژه 5- بار حاصل نگرفت. از طرفی روند کاهش میزان برونتین با افزایش شدت تنش در مراحل ساچه دهی و گلدهی نسبت به سابی مراحل رشد محصول تر بود. بنابراین به نظر می‌رسد مقدار مالی دی آلدهید که محصول نهایی و نسبتاً پایدار و اکسیداسیون مولکول های برگ (چربی ها) است اندازه گیری می‌شود. در این خصوص از روش هگه و همکاران (5) با تغییراتی به شرح زیر استفاده گردید. مقدار 5/0 گرم نمونه برگ را هموزن زده نموده و یک میلی لیتر اسید تری کلرواستیک (7/v) به آن اضافه شد. محلول حاضر را با افزودن 10 میلی لیتر پدیده مشابه به شدت مخلوط نموده (ورکس) و با دور 75 در دقیقه به مدت 15 دقیقه سانتی‌فورنوگردی. رسوب کوچکی که از سانتی‌فورنوگردی حاصل شد را با ۵ میلی لیتر استون شسته داده و ورکس و مجدد با همان دور به مدت ۵ دقیقه سانتی‌فورنوگردی شد و آخرین مرحله چهار مرتیب تکرار شد. سپس مقدار ۳ میلی لیتر (H3PO4) و یک میلی لیتر اسید تیوباربیوتیک (w/v) افزوده و محلول برای مدت ۳۰ دقیقه در دمای ۱۰۰ C° قرار داده شد. سپس واکنش با سرد کردن سریع لوله ها در داخل یخ متوقف گردید. مقدار جذب محلول حاصل با طول موج ۲۵۴ و ۵۹۰ به وسیله دستگاه اسکیتروفوترمتر (UVikaton watford) اندازه گیری گردید (13). نشان داد فسفر رادیو اکتیو (آنالازنوترونتون بلات)
FSVER RADOI AKTIVO (ANALAZNUTRONTEN BELAT)
با توجه به RNA به زل آگاز و الکتروفوروز آن انجم شد. پس از جدا اندازه‌گیری RNA به غشاء قسمتهای اضافی زل RNA با افزودن HybondN+(Amersham) با ۱/۵ مولار در مدت حداقل ۱۰ ساعت

1- Northern-blot analysis
سازگاری ترجمه فیزیولوژیک با شرایط محیطی می‌باشد در سایر مطالعات نیز گزارش شده است (10 و 11).

جدول 1- میزان پروتئین بر گر در مراحل نمو برای تیمارهای خشکی (استخراج پروتئین غلاف و دانه از تیمارهای)
مرتبه به ترتیب در مراحل غلاف دهی و رشدگی انجام شد

<table>
<thead>
<tr>
<th>تیمارهای خشکی (بار)</th>
<th>مراحل نمومنبع</th>
<th>شاهد</th>
<th>گلدهی</th>
<th>غلاف دهی</th>
<th>رشدگی فیزیولوژیک</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مراحل نمومنبع</td>
<td>شاهد</td>
<td>گلدهی</td>
<td>غلاف دهی</td>
<td>رشدگی فیزیولوژیک</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
<tr>
<td>1/3</td>
<td>1/3</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
<tr>
<td>3/4</td>
<td>3/4</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
</tbody>
</table>

فاصله میانگین تیمارها توسط آزمون دافیس و یک خرید مشترک هستند. اختلاف

آماری دانسته (5:00).

کلروفیل حساسیت بیشتری به شرایط نشان می‌دهد. برخی محققین دیگر نیز تغییرات کلروفیل را به عنوان شاخصی برای مقاومت به نشان معرفی نموده‌اند (4). سنجش به منظور تعیین تیمارهای TBARM بیوشیمیایی از روند تاثیر سطحی نشان کلروفیل است. این سنجش اطلاعات از میزان اکسیداسیون سلولی و بیوژ پراکسیداسیون، بروز نیز یک فرایند می‌آورد. از نتایج مشترک اغلب نشان داده شده است. نتایج نشان داد که روند کاهش پروتئین برای هر سه تیمار شاهد زیادی داشت این مسئله در مورد کلروفیل نیز صادق بود. مقایسه الگوی تغییرات پروتئین و کلروفیل طی مراحل رشد برای تیمارهای مورد اشاره نشان داد که با افزایش شدت نشان

تیمار خشکی 6- بار علاوه بر تاثیر شدید بر کاهش پروتئین موجب بروز آثار منفی در رشد و نمو گردید. تیمار 5- بار اثرات سوء شدیدی بر ظاهر گیاه ناشتی و بر موجب افت معنی‌داری در کاهش پروتئین نسبت به شاهد و حتی تیمار ما قبل خود 1- بار داشت. با توجه به تشخیص بیشتری توجه میزان پروتئین در تیمارهای 1- بار منفی یک الگوی تغییرات میزان پروتئین در کنار کلروفیل برای تیمارهای مزبور در شکل 1 نشان داده شده است. نتایج نشان داد که روند کاهش پروتئین برای هر سه تیمار شاهد چنین واکنشی نیز گزارش نمی‌گردد. این اثبات آزادی اکسیژن 1 (AOS) است (11).

1- Active Oxygen Species (AOS)
آکسیداتیو و در پی آن اختلال در فعل و انفعالات سلولی می‌شود و دوم اینکه گنچه‌های پایین این رادیکالها به عنوان فاکتورهای سیگنال‌گذار در فعال نمودن زنهایی دفاعی اینفای نقش می‌نمایند. چنین نقشی به طور معمول از طریق تأثیر مستقیم یا غیرمستقیم بر پروموتور زن‌های مزبور صورت می‌پذیرد (۷۹). نتایج این تحقیق نشان داد با افزایش تنش خشن‌کننده میزان پلکاتی نشان داد (شکل ۲).

ظرف گردیده (۸۸) با مطالعات انجام شده روی گیاه کلزا افراشی میزان فلوروپیدها و نقش آنتی اکسیدان آنها تحت تأثیر تنش اکسیداتیو ثابت شده است (۱۲). به‌لحاظ مولکولی و در سطح سلولی خسارات ناشی از استرس‌های محیطی به دلیل بروز تنش اکسیداتیو می‌باشد. تنش‌های محیطی از مهم‌ترین محدود‌گذاره‌های رشد و تولید گیاهان زراعی می‌باشد. بررسی میزان این رادیکال‌ها از دو جهت حائز اهمیت است اول اینکه این رادیکال‌ها در گنچه‌های بالا منجر به بروز تنش

شکل ۱- روید تکیه‌گیری میزان پروتئین و کلروفیل در مراحل نمو در شرایط تبیانی شامه، ۳:۵ و ۱۰۵ - ۱ بار میزان خطای معیار با علائم میله نشان داده شده است (۴:۰).
الگوی بیان ذن روند تغییرات بیان ذن گلوتامین سینتزاز در شکل 3 نشان داده شده است. الگوی بیان ذن مازبور در بیش از گونه‌ای بود که با افزایش سن عموماً افزایش شده بوده با طور قابل توجهی حامل گردید. چنین به نظر می‌رسد که این ذن در روند روانی برای بیشتر ذهن تشکیل می‌دهد. اینکه برای مرحله ای فعال است که به لحاظ کیستوژن و ذهن‌کننده حائز اهمیت می‌باشد. از مشخصه‌های اضافی برای بیشتر روند انتقال مواد آبی از بینهایت ذهن به ادامه های جوان و ذکرخیر ای پویزه دانه است (11). بدن منظور شکسته چند مولکول‌ها حیاتی بزرگ نظیر بروتئین ها اهمیت زیادی
حساسیت سلول‌های انجماد گرفته. هیبریداسیون
نغشه با کلون رادیواکتوسیو گلوتاتیون سنینتاز
انجم و به‌منظور کاست رادیواکتوسیو نتایج تنظیم
گردید. در مورد غلاف و دانه استخراج RNA
از نمونه‌های مربوطه صورت بنا بر گرفت.

شکل ۲ - هیبریداسیون نورتون بلات: استخراج RNA
برای هر تیمار صورت گرفت.

این زن در غلاف مطالعه ی روند فراآیند پیری
و تاثیر تنش های شدیدتر محیطی در غلاف
در مقایسه با برگ می‌توانند اطلاعات مفیدی را
فرآهم آورند. این موضوع توسط چالند و
همکاران (۳۴) نیز مورد تأکید قرار گرفته است.
تغییرات بین زن گلوتاتیون سنینتاز در دانه
بیشترین نتایج را تحت تاثیر سطوح تنش
خشکی نشان داد و با توجه به فعالیت این زن
دانه انجام مطالعات تکمیلی در این ارتباط
حائز اهمیت می‌باشد.

از نتایج قابل توجه در این تحقیق بیان زن
گلوتاتین در غلاف بسی به دویت کم یافته و نسبتاً زیاد غلاف در کلزا به نظر می‌رسد غلاف
سهم عمده ای در فتوسنتز، ماده سازی و در
ادامه ای انتقال مواد به دانه را دارد. بیان زن
گلوتاتین در غلاف تحت تاثیر تنش خشکی در
مقاومه با بیان آن در برگ تغییرات کمتری
نشان داد. همچنین بیشترین مقدار بیان زن در
تیمار ۴-باز حاصل گردید. در حالیکه در برگ
در این تیمار سطح پایین‌تری از بیان زن ملاحظه
شد (شکل ۳). با توجه به شباهت نسبی بیان

Evaluation of Glutamine Syntetase Gene Role in Growth Stage of Brassica Napusat and Drought Stress Condition

S. Navabpour¹ and R. Haddad²

¹- Assistant Professor, Gorgan University of Agricultural Sciences and Natural Resources
²- Assistant Professor, University of IKIU, Qazvin

Abstract

In order to evaluate on Glutamine Syntetase gene expression as well as amount of protein, chlorophyll and oxidative index of TBARM the experiment has been carried out using Brassica napus (Falcon cv.) in research greenhouse condition. The drought stress treatments were included -0.5, -1, -2, -4 and -6 bar that by using of equivalent water (6.5, 6, 4.7, 3, 1.1 litr respectively) have been irrigated, also field capacity (FC) irrigation (6.8 litr) has been used as control. The drought stress treatment has been carried out after plant vernalization and transferred to greenhouse. To increase accuracy, the statistical design of Randomized Complete Block (RBC) has been used with 4 replicates. In order to measure gene activity, chlorophyll, protein and TBARM amount leaf samples have been collected at different growth stages (stem elongation, flowering, pod stage, physiologic maturity) for all treatments. The results showed, the amount of protein and chlorophyll decreased by drought stress intensity as well as plant age. In most growth stages there were not significant different for protein amount at control, -0.5 and -1 bar drought treatments. The amount of TBARM was built up by drought stress increase. The glutamine syntetase transcript intensified by plant age increase. The gene activity was gone up by increase drought stress up to -1 and declined by higher stress. The gene activity in pod and grain was lower than its amount in leaf.

Keywords: Brassica napus, Drought stress, Protein, Chlorophyll, Glutamine syntetase gene